邱根胜, 吴露, 雒志鹏. 一类(h, φ)-意义下的分式规划解的最优性条件及对偶定理[J]. 南昌航空大学学报(自然科学版), 2008, 22(1): 43-48.
引用本文: 邱根胜, 吴露, 雒志鹏. 一类(h, φ)-意义下的分式规划解的最优性条件及对偶定理[J]. 南昌航空大学学报(自然科学版), 2008, 22(1): 43-48.
QIU Gen-sheng, WU Lu, LUO Zhi-peng. Optimality conditions and duality for solutions of a chass of fractional programming in the sense of (h, φ)[J]. Journal of nanchang hangkong university(Natural science edition), 2008, 22(1): 43-48.
Citation: QIU Gen-sheng, WU Lu, LUO Zhi-peng. Optimality conditions and duality for solutions of a chass of fractional programming in the sense of (h, φ)[J]. Journal of nanchang hangkong university(Natural science edition), 2008, 22(1): 43-48.

一类(h, φ)-意义下的分式规划解的最优性条件及对偶定理

Optimality conditions and duality for solutions of a chass of fractional programming in the sense of (h, φ)

  • 摘要: 本文利用Ben-Tal广义代数运算对一类分式规划进行了讨论,在目标及约束函数为(h,φ)-η不变凸的情况下得出了分式规划解的广义最优性条件,并建立了它的Mond-Weir对偶模型,证明了对偶定理.

     

    Abstract: In this paper,a class of fractional programming is discussed by using Ben-Tal generali-zed algebraic operation.Optimality conditions for this class of fractional programming are establi-shed while its objective functions and constraint functions are differentiable(h,Ф)-function.Moreover,Mond-Weir duality model is constructed and appropriate duality theorems are proved.

     

/

返回文章
返回