郑远广, 黄承代. 含快慢变量的Hopfield神经网络系统的张弛振荡和吸引盆[J]. 南昌航空大学学报(自然科学版), 2012, 26(1): 7-14.
引用本文: 郑远广, 黄承代. 含快慢变量的Hopfield神经网络系统的张弛振荡和吸引盆[J]. 南昌航空大学学报(自然科学版), 2012, 26(1): 7-14.
ZHENG Yuan-guang, HUANG Cheng-dai. Absorbing Basins and Relaxation Oscillation of Hopfield Neural Networks with Slow-fast Variables[J]. Journal of nanchang hangkong university(Natural science edition), 2012, 26(1): 7-14.
Citation: ZHENG Yuan-guang, HUANG Cheng-dai. Absorbing Basins and Relaxation Oscillation of Hopfield Neural Networks with Slow-fast Variables[J]. Journal of nanchang hangkong university(Natural science edition), 2012, 26(1): 7-14.

含快慢变量的Hopfield神经网络系统的张弛振荡和吸引盆

Absorbing Basins and Relaxation Oscillation of Hopfield Neural Networks with Slow-fast Variables

  • 摘要: 基于几何奇异摄动理论, 考察了含快慢变量的Hopfield神经网络系统的动力学行为.首先, 通过对快子系统的稳定性分析, 求得快慢系统的慢变流形的结构.其次, 利用几何奇异摄动法, 分析了系统在慢变流形附近的解轨线形状, 证明了张弛振荡的存在性, 并求得振荡解的周期;当慢变流形上存在稳定的平衡点时, 张弛振荡消失, 这时求得各个稳定平衡点的吸引盆.最后, 通过数值算例分析, 验证了理论分析的正确性.

     

    Abstract: On the basis of geometric singular perturbation theory, the dynamical behaviors of Hopfield neural networks with slow-fast variables are investigated.Firstly, the structure of the slow manifold is determined through the stability analysis of the fast subsystem.Then, the solution trajectory in the vicinity of the slow manifold is analysed by using the method of geometric singular perturbation, and the existence of relaxation oscillation is proved.Moreover, the period of the relaxation oscillation is calculated.When there are some stable equilibrium points in the slow manifold, the relaxation oscillation vanishes, and the shape of absorbing basin of every stable equilibrium points is determined.At last, numerical examples are given to validate analytical results.

     

/

返回文章
返回