徐伟, 陈凌蕙, 黄香蕉. 径向基函数求解Hamilton-Jacobi方程[J]. 南昌航空大学学报(自然科学版), 2010, 24(3): 56-59.
引用本文: 徐伟, 陈凌蕙, 黄香蕉. 径向基函数求解Hamilton-Jacobi方程[J]. 南昌航空大学学报(自然科学版), 2010, 24(3): 56-59.
XU Wei, CHEN Ling-hui, HUANG Xiang-jiao. Solving Hamilton-Jacobi Equations by Using Radial Basis Functions[J]. Journal of nanchang hangkong university(Natural science edition), 2010, 24(3): 56-59.
Citation: XU Wei, CHEN Ling-hui, HUANG Xiang-jiao. Solving Hamilton-Jacobi Equations by Using Radial Basis Functions[J]. Journal of nanchang hangkong university(Natural science edition), 2010, 24(3): 56-59.

径向基函数求解Hamilton-Jacobi方程

Solving Hamilton-Jacobi Equations by Using Radial Basis Functions

  • 摘要: 文章利用径向基函数中的MQ函数逼近Hamilton-Jacobi方程中的空间导数项,并辅以相应的限制器,构造了一类求解Hamilton-Jacobi方程的差分格式.数值实验结果表明:该格式具有高精度,高分辨率且形式简单等优点.

     

    Abstract: A class of finite difference schemes is constructed for Hamilton-Jacobi(H-J) equations by using MQ function of radial basis function and corresponding limiter correction.Several typical numerical experiments show that these schemes have advantages of high accuracy,high resolution and simple form.

     

/

返回文章
返回