郑华盛. 求解二维双曲型守恒律的一类MmB差分格式[J]. 南昌航空大学学报(自然科学版), 1997, 11(2): 57-61.
引用本文: 郑华盛. 求解二维双曲型守恒律的一类MmB差分格式[J]. 南昌航空大学学报(自然科学版), 1997, 11(2): 57-61.
Zheng Huasheng. A Class of MmB Difference Schemes for Hyperbolic Conservation laws in Two Dimensions[J]. Journal of nanchang hangkong university(Natural science edition), 1997, 11(2): 57-61.
Citation: Zheng Huasheng. A Class of MmB Difference Schemes for Hyperbolic Conservation laws in Two Dimensions[J]. Journal of nanchang hangkong university(Natural science edition), 1997, 11(2): 57-61.

求解二维双曲型守恒律的一类MmB差分格式

A Class of MmB Difference Schemes for Hyperbolic Conservation laws in Two Dimensions

  • 摘要: 本文利用MmB(MaximumandminimumBounds)差分格式的思想,将文1中所得差分格式改进为MmB差分格式,对步长比为CFL(Courant-Friedrids-Lax)限制虽然较文1严格,但有效地防止了非物理振荡,而且在数值计算过程中,CFL数可适当地放大.数值实验结果表明,改进的MmB差分格式处理间断解的能力令人满意.

     

    Abstract: This paper impoved the difference Schemes of 1 by using the concet of MmB difference schemes.Although its CFL limitation is stricter than that in 1 it is effective for preveting nonphysics oscillation,and its CFL number Can be relaxed properly in the Course of numerical Calculating.The results of the numerical experiements shown that the improved MmB difference Scheme is Satisfied for dealing with discontinuity solution.

     

/

返回文章
返回