李动锋, 雒志鹏, 吴露, 邱根胜. 一种新的广义凸多目标分式规划的对偶定理[J]. 南昌航空大学学报(自然科学版), 2007, 21(3): 24-31.
引用本文: 李动锋, 雒志鹏, 吴露, 邱根胜. 一种新的广义凸多目标分式规划的对偶定理[J]. 南昌航空大学学报(自然科学版), 2007, 21(3): 24-31.
LI Dong-feng, LUO Zhi-peng, WU Lu, QIU Gen-sheng. Duality theorems for multi-objective fractional programming with a new formulation of generalized convexity[J]. Journal of nanchang hangkong university(Natural science edition), 2007, 21(3): 24-31.
Citation: LI Dong-feng, LUO Zhi-peng, WU Lu, QIU Gen-sheng. Duality theorems for multi-objective fractional programming with a new formulation of generalized convexity[J]. Journal of nanchang hangkong university(Natural science edition), 2007, 21(3): 24-31.

一种新的广义凸多目标分式规划的对偶定理

Duality theorems for multi-objective fractional programming with a new formulation of generalized convexity

  • 摘要: 本文给出了一类新的广义凸函数-(F,α,ρ,θ)-b-凸函数,讨论了多目标分式规划(MFP)的三种对偶模型:Mond-Weir型对偶、Lagrange型对偶、Schaible型对偶,并基于(F,α,ρ,θ)-b-凸性证明了各自相应的弱、强对偶定理.

     

    Abstract: In this paper,we present a new formulation of generalized convex function(F,α,ρ,θ)-b-convex function.Then three duality types of(MFP) which are Mond-Weir type,Lagrange type and Schaible type are discussed.At the same time,the weak duality theorems and strong duality theorems are proved for the three types of duality respectively based on the(F,α,ρ,θ)-b-convexity.

     

/

返回文章
返回