熊归凤, 毕公平, 程筠, 袁达明. Banach空间中有关多值增生映射的集值变分包含问题[J]. 南昌航空大学学报(自然科学版), 2013, 27(1): 85-89.
引用本文: 熊归凤, 毕公平, 程筠, 袁达明. Banach空间中有关多值增生映射的集值变分包含问题[J]. 南昌航空大学学报(自然科学版), 2013, 27(1): 85-89.
XIONG Gui-feng, BI Gong-ping, CHENG Yun, YUAN Da-ming. On Set-Valued Variational Inclusions Involving Multi-valued Accretive Mappings in Banach Spaces[J]. Journal of nanchang hangkong university(Natural science edition), 2013, 27(1): 85-89.
Citation: XIONG Gui-feng, BI Gong-ping, CHENG Yun, YUAN Da-ming. On Set-Valued Variational Inclusions Involving Multi-valued Accretive Mappings in Banach Spaces[J]. Journal of nanchang hangkong university(Natural science edition), 2013, 27(1): 85-89.

Banach空间中有关多值增生映射的集值变分包含问题

On Set-Valued Variational Inclusions Involving Multi-valued Accretive Mappings in Banach Spaces

  • 摘要: 在一致凸的对偶Banach空间中,建立了一类集值变分包含问题的存在性定理,讨论了在没有附加连续性的假设下,Mann型迭代序列强收敛于这个问题的解.

     

    Abstract: An existence theorem for a class of set-valued variational inclusion problems is established in Banach spaces with uniformly convex dual. Furthermore,it is shown that a sequence of a Mann-type iteration algorithm is strongly convergent to the solutions in this problems. No continuousness assumption will be imposed on the multi-valued accretive mapping.

     

/

返回文章
返回