求解Hamilton-Jacobi方程的一类无波动的耗散差分格式
A Class of Non-oscillatory Dissipative Difference Schemes for Solving Hamilton-Jacobi Equations
-
摘要: 利用Hamilton-Jacobi方程与双曲型守恒律的紧密联系,借助于求解双曲型守恒律的一类无波动无自由参数的耗散差分(NND)格式构造了一类求解Hamilton-Jacobi方程的差分格式.数值实验结果表明:该格式具有计算量小且高分辨率等优点.Abstract: Hamilton-Jacobi(H-J) equations are closely related to hyperbolic conservation laws.Based on their relations and non-oscillatory and non-free-parameter dissipation(NND) schemes of solving one dimensional hyperbolic conservation laws,a class of difference schemes for one dimensional H-J equation are presented.Several typical numerical experiments show that these schemes have advantages of low evaluated cost and high resolution.