Z-连续偏序集P上σZ(P)的Soberity
(P)’s Soberity on Z-continuous Poset P
-
摘要: Sober空间是介于T0空间与T2空间之间又完全独立于T1空间的一类拓扑空间,本文基于拓扑σZ(P),证明了Z-连续偏序集P上的拓扑σZ(P)当σD(P)≤σ(P)时是Sober空间.Abstract: Sober space is a topology space between T0 space and T2 space,meanwhile completely isolated to T1 space.Based on the topology σZ,this paper proved that σ(P) is a sober space when σD(P)≤σ(P) on the topology σZ.