邱根胜. 广义凸多目标分式规划解的充分条件及其对偶定理[J]. 南昌航空大学学报(自然科学版), 2001, 15(1): 68-73.
引用本文: 邱根胜. 广义凸多目标分式规划解的充分条件及其对偶定理[J]. 南昌航空大学学报(自然科学版), 2001, 15(1): 68-73.
Qiu Gen-sheng. Sufficiency and Duality for Multiobjective Fractional Programming with Generalized Invexity[J]. Journal of nanchang hangkong university(Natural science edition), 2001, 15(1): 68-73.
Citation: Qiu Gen-sheng. Sufficiency and Duality for Multiobjective Fractional Programming with Generalized Invexity[J]. Journal of nanchang hangkong university(Natural science edition), 2001, 15(1): 68-73.

广义凸多目标分式规划解的充分条件及其对偶定理

Sufficiency and Duality for Multiobjective Fractional Programming with Generalized Invexity

  • 摘要: 最优性条件及对偶性理论是数学规划理论的最重要的组成部分,文(1)讨论了广义不变凸分式规划的最优性充分条件及Mond-Weir型对偶,但其中的主要结论是错误的.本文改正了文(1)的一个主要错误,并给出了广义不变凸多目标分式规划的解的几个充分条件,讨论了它的另一种对遇模型,证明了弱对偶和强对偶定理.

     

    Abstract: Optimal conditions and duality are the most important parts of the theory for mathematical programming,Reddy.L.V.and Mukhejee.R.N.discussed the sufficiency and the duality of Mond Weir type on the fractional programming with generalized invexity in Ref.(1),but the main result is incorrect,In this paper.we correct one error in Ref.(1),and discuss the multiobjective fractional programming with generalized invexity,obtain Some sufficient conditions,introduce one type of dual model,and prove the corresponding theorems of weak duality and strong duality.

     

/

返回文章
返回