非光滑多目标规划的Fuzzy弱有效解的最优性条件及其对偶定理
Optimality and Duality for Fuzzy Weak Efficient Solutions in Nonsmooth Multiobjective Programming
-
摘要: 本文研究具有Fuzzy约束的非光滑多目标规划(FVP),讨论了(FVP)的Fuzzy弱有效解的几何型、Fritz John型和Kuhn Tncker型最优性条件,并尝试建立了(FVP)的Mond-Weir型对偶,得到了弱对偶、直接对偶及逆对偶定理.Abstract: In this paper,the nonsmooth multiobjective programming with fuzzy constaints(FVP) was investigated.Using generalized convexity,We discuss the optimality condition of geometric type,Frity John type and Kuhn Tncker type,introduce one Mond Weir type of dual model,and prove the corresponding theorems of Weak duality,direct duality and dverse djuality.