韩拥军. 二阶非线性中立时滞型泛函微分方程的振动性[J]. 南昌航空大学学报(自然科学版), 2010, 24(3): 83-86.
引用本文: 韩拥军. 二阶非线性中立时滞型泛函微分方程的振动性[J]. 南昌航空大学学报(自然科学版), 2010, 24(3): 83-86.
HAN Yong-jun. Oscillation of Second Order Nonlinear Neutral Functional Differential Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2010, 24(3): 83-86.
Citation: HAN Yong-jun. Oscillation of Second Order Nonlinear Neutral Functional Differential Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2010, 24(3): 83-86.

二阶非线性中立时滞型泛函微分方程的振动性

Oscillation of Second Order Nonlinear Neutral Functional Differential Equation

  • 摘要: 讨论了二阶非线性中立型微分方程r(t)φx(t)z'(t)'+q(t)gx(t),x'(t)+k(t)fx(σ(t))=0 t≥t0 r(t)φx(t)z'(t)'+q(t)fxσ(t)gt,x'(t)=0 t≥t0的振动性,其中:z(t)=x(t)+p(t)x(τ(t)),得到了方程振动的充分条件,并举例说明了定理的应用,推广了文献2、3和4的相应结果.

     

    Abstract: The oscillation of second order nonlinear neutral functional differential equation r(t)φx(t)z'(t)'+q(t)gx(t),x'(t)+k(t)fx(σ(t)) =0 t≥t0 r(t)φx(t)z'(t)'+q(t)fxσ(t)gt,x'(t)=0 t≥t0 is discussed,of which z(t)=x(t)+p(t)x((t)) obtains sufficient conditions.The application of the theorem is illustrated.

     

/

返回文章
返回