蒋进伟, 陈小庆, 李光昱, 邓启波. 智能体路径规划中的自适应变步长A*算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 78-85. DOI: 10.3969/j.issn.2096-8566.2025.04.009
引用本文: 蒋进伟, 陈小庆, 李光昱, 邓启波. 智能体路径规划中的自适应变步长A*算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 78-85. DOI: 10.3969/j.issn.2096-8566.2025.04.009
Jinwei JIANG, Xiaoqing CHEN, Guangyu LI, Qibo DENG. A* Algorithm with Adaptive Variable Step for Path Planning of Intelligent Agents[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 78-85. DOI: 10.3969/j.issn.2096-8566.2025.04.009
Citation: Jinwei JIANG, Xiaoqing CHEN, Guangyu LI, Qibo DENG. A* Algorithm with Adaptive Variable Step for Path Planning of Intelligent Agents[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 78-85. DOI: 10.3969/j.issn.2096-8566.2025.04.009

智能体路径规划中的自适应变步长A*算法

A* Algorithm with Adaptive Variable Step for Path Planning of Intelligent Agents

  • 摘要: 针对A*算法冗余节点多、路径平滑度低、容易陷入局部极值等问题,本文采用自适应变步长策略等对其进行改进,以获得长度更短、平滑度更高、安全可行的移动路径。首先,对启发函数的权重进行设计,确保智能体能够权衡移动路径和障碍之间的关系;其次,引入自适应变步长搜索策略,提高算法对复杂地图的适应度;最后,引入Floyd剪枝算法进一步简化路径,去除冗余转折节点。仿真结果表明,改进A*算法在路径长度、平滑度等方面具有明显优势:相较于传统A*算法,规划路径的转弯角度下降64.69%,路径长度下降12.9%;相较于RRT*算法,改进A*算法在路径长度、路径平滑度、求解效率方面的优势同样明显。

     

    Abstract: Aiming at the problems of A* algorithm, such as a large number of redundant nodes, low smoothness, and a high tendency to fall into local minima, improvements are made by an adaptive variable-step-size search strategy to obtain a shorter, smoother, and safe and feasible mobile path in this paper. Firstly, the weight of the heuristic function is designed to ensurethat the intelligent agent can balance the relationship between the moving path and obstacles. Secondly, an adaptive variable-step-size search strategy is introduced to improve the algorithm's adaptability to complex maps. Finally, the Floyd pruning algorithm is introduced to further simplify the path and remove redundant turning nodes. Simulation results demonstrate that the improved A* algorithm has obvious advantages in terms of path length and smoothness. Compared with the traditional A* algorithm, the turning angle of the planned path is reduced by 64.69% and the path length is reduced by 12.9%. Furthermore, compared with the RRT* algorithm, the improved A* algorithm also has obvious advantages in terms of path length, smoothness, and computational efficiency.

     

/

返回文章
返回