郭美倩, 赵刚. 基于LWDS-YOLO的复合材料结构损伤的识别研究[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 67-77. DOI: 10.3969/j.issn.2096-8566.2025.04.008
引用本文: 郭美倩, 赵刚. 基于LWDS-YOLO的复合材料结构损伤的识别研究[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 67-77. DOI: 10.3969/j.issn.2096-8566.2025.04.008
Meiqian GUO, Gang ZHAO. LWDS-YOLO-Based Detection Method for Structural Damage in Composite Materials[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 67-77. DOI: 10.3969/j.issn.2096-8566.2025.04.008
Citation: Meiqian GUO, Gang ZHAO. LWDS-YOLO-Based Detection Method for Structural Damage in Composite Materials[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 67-77. DOI: 10.3969/j.issn.2096-8566.2025.04.008

基于LWDS-YOLO的复合材料结构损伤的识别研究

LWDS-YOLO-Based Detection Method for Structural Damage in Composite Materials

  • 摘要: 传统的复合材料结构损伤检测技术操作复杂,需要依靠专业技术人员且检测成本高昂。针对这一问题,本文提出基于YOLOv5s模型改进的复合材料结构损伤的LWDS识别方法。在原模型中引入大选择性核模块增强特征提取能力,采用WPDIoU Loss优化边界框回归精度,集成SE注意力机制提升关键特征权重。在复合材料结构数据集上的实验结果表明,本文提出的方法在检测精度方面有着明显提升。与基准模型相比,该模型的性能指标显著提升,其中分类准确度增加12.8%,目标检出率上升11.7%,平均精度均值(mAP)提升15.3%,同时保持较高的实时处理速度。新提出的方法能对复合材料结构损伤实现准确且快速的检测,可有效地避免损伤缺陷的误检、漏检等情况。

     

    Abstract: Traditional composite structure damage detection technologies suffers from operational complexity, a reliance on skilled personnel, and high detection costs. To address this issue, this paper proposes an LWDS identification method for composite structure damage based on the improved YOLOv5s model. A large selective kernel module is introduced into the original model to enhance feature extraction capability, the WPDIoU loss is adopted to optimize the bounding box regression accuracy, and the SE attention mechanism is integrated to improve the weight of key features. Experiments results on the composite structure dataset demonstrate that the proposed method achieves significant improvements in detection accuracy. Compared with the baseline model, the performance indicators of this model are significantly improved. The classification accuracy increased by 12.8%, the target detection rate by 11.7%, and the mean average precision (mAP) by 15.3%, while maintaining a high real-time processing speed. The newly proposed method can realize accurate and rapid detection of composite structure damage, and effectively avoid false detections and missed detections of damage defects.

     

/

返回文章
返回