熊文轩, 周宏伟, 刘文斌, 厉行, 刘思坤, 饶智博. 基于自适应球谐函数和动态密度控制的三维高斯泼溅改进方法[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 55-66. DOI: 10.3969/j.issn.2096-8566.2025.04.007
引用本文: 熊文轩, 周宏伟, 刘文斌, 厉行, 刘思坤, 饶智博. 基于自适应球谐函数和动态密度控制的三维高斯泼溅改进方法[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 55-66. DOI: 10.3969/j.issn.2096-8566.2025.04.007
Wenxuan XIONG, Hongwei ZHOU, Wenbin LIU, Xing LI, Sikun LIU, Zhibo RAO. Adaptive Spherical Harmonics Degree Control and Dynamic Density Control for 3D Gaussian Splatting[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 55-66. DOI: 10.3969/j.issn.2096-8566.2025.04.007
Citation: Wenxuan XIONG, Hongwei ZHOU, Wenbin LIU, Xing LI, Sikun LIU, Zhibo RAO. Adaptive Spherical Harmonics Degree Control and Dynamic Density Control for 3D Gaussian Splatting[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 55-66. DOI: 10.3969/j.issn.2096-8566.2025.04.007

基于自适应球谐函数和动态密度控制的三维高斯泼溅改进方法

Adaptive Spherical Harmonics Degree Control and Dynamic Density Control for 3D Gaussian Splatting

  • 摘要: 现有三维高斯泼溅 (3DGS) 方法采用固定的球谐函数 (SH) 度数与静态的密度控制策略,这限制了其在不同复杂度场景下的自适应能力与性能表现。本文提出2种改进方案来提升三维高斯泼溅的自适应性和效率。首先,提出一种自适应球谐函数度数控制机制,该机制基于重建误差和视角变化动态调整每个高斯体的球谐函数度数,在优化计算资源的同时实现更准确的颜色表示。其次,开发一种动态密度控制策略,该策略根据局部场景复杂度自适应调整密度阈值,综合考虑深度信息和图像梯度,以实现更合理的点云分布。实验表明, 本文方法在MipNeRF360、3DGS及南昌航空大学综合实验楼图像序列上的PSNR相较于基准方法分别提升0.59、0.49、0.57 dB。在处理植被茂密、遮挡复杂的“Garden”等高难度场景时,所提策略的优势尤为显著。消融实验亦验证了各改进模块的独立有效性与协同增益。

     

    Abstract: Existing 3D Gaussian Splatting (3DGS) methods employ fixed spherical harmonic (SH) degrees and static density control strategies, which restricts their adaptability and performance in scenes with different levels of complexity. This paper proposes two enhancement schemes to improve the adaptability and efficiency of 3DGS. Firstly, an adaptive SH degree control mechanism is proposed, which dynamically adjusts the SH degree for each Gaussian based on reconstruction error and viewpoint changes, achieving more accurate color representation while optimizing computational resources. Secondly, a dynamic density control strategy is developed, which adaptively adjusts the density threshold according to local scene complexity, taking both depth information and image gradients into account to achieve a more reasonable point cloud distribution. Experimental results demonstrate that our method achieves PSNR improvements of 0.59 dB, 0.49 dB, and 0.57 dB on the MipNeRF360, 3DGS, and an image sequence of the Comprehensive Experimental Building of Nanchang Hangkong University, respectively, compared with the baseline method. The advantages of the proposed strategies are particularly significant in challenging scenes with dense vegetation and complex occlusions, such as the “Garden” scene. Furthermore, ablation studies verify the individual effectiveness and synergistic gains of each proposed module.

     

/

返回文章
返回