邝龙, 贾晓梅, 朱玉卿, 张春华. 求解对流−弥散方程的快速方法[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 39-47. DOI: 10.3969/j.issn.2096-8566.2025.04.005
引用本文: 邝龙, 贾晓梅, 朱玉卿, 张春华. 求解对流−弥散方程的快速方法[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 39-47. DOI: 10.3969/j.issn.2096-8566.2025.04.005
Long KUANG, Xiaomei JIA, Yuqing ZHU, Chunhua ZHANG. A Fast Method for Solving Advection-dispersion Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 39-47. DOI: 10.3969/j.issn.2096-8566.2025.04.005
Citation: Long KUANG, Xiaomei JIA, Yuqing ZHU, Chunhua ZHANG. A Fast Method for Solving Advection-dispersion Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 39-47. DOI: 10.3969/j.issn.2096-8566.2025.04.005

求解对流−弥散方程的快速方法

A Fast Method for Solving Advection-dispersion Equations

  • 摘要: 本文考虑Riesz空间分数阶对流−弥散方程的快速数值算法。首先,本文利用分数阶中心差分格式离散该方程的空间变量,用Crank-Nicolson格式离散时间变量,得到一个有限差分二阶格式,并用该格式离散Riesz空间分数阶对流-弥散方程后得到一个线性系统。其次,基于该线性系统的系数矩阵具有Toeplitz结构,本文提出一种基于正弦变换的 \boldsymbol\tau 预处理子加速求解该线性系统。在理论上分析该预处理矩阵的收敛性,证明预处理矩阵的谱分布在一个开区间(1/2,3/2)内。最后,通过数值实验验证了算法的二阶精度和预处理子的有效性。

     

    Abstract: In this paper, a fast numerical algorithm for Riesz-space fractional advection-dispersion equation is considered. Firstly, the spatial variables of the equation are discretized using a fractional central difference scheme, while the time variables are discretized via the Crank-Nicolson scheme. This yields a second-order finite difference scheme, which further results in a linear system after discretizing the equation. Secondly, since the coefficient matrix of this linear system has a Toeplitz structure, a \boldsymbol\tau preconditioner based on sine transform is proposed to accelerate the solution of the linear system. The convergence of the preconditioned matrix is analyzed theoretically, and we prove that the spectrum of the preconditioned matrix is clustered in the interval (1/2,3/2). Finally, the second-order accuracy of the algorithm and the effectiveness of the preconditioner are verified by numerical experiments.

     

/

返回文章
返回