何思鹏, 成龙, 刘文光, 陈浪炜. 驰振式压电能量俘获器振动的解析解及解析阻尼匹配判据[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 21-28, 93. DOI: 10.3969/j.issn.2096-8566.2025.04.003
引用本文: 何思鹏, 成龙, 刘文光, 陈浪炜. 驰振式压电能量俘获器振动的解析解及解析阻尼匹配判据[J]. 南昌航空大学学报(自然科学版), 2025, 39(4): 21-28, 93. DOI: 10.3969/j.issn.2096-8566.2025.04.003
Sipeng HE, Long CHENG, Wenguang LIU, Langwei CHEN. Analytical Solutions and Damping-matching Criterion for Flutter-based Piezoelectric Energy Harvesters[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 21-28, 93. DOI: 10.3969/j.issn.2096-8566.2025.04.003
Citation: Sipeng HE, Long CHENG, Wenguang LIU, Langwei CHEN. Analytical Solutions and Damping-matching Criterion for Flutter-based Piezoelectric Energy Harvesters[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(4): 21-28, 93. DOI: 10.3969/j.issn.2096-8566.2025.04.003

驰振式压电能量俘获器振动的解析解及解析阻尼匹配判据

Analytical Solutions and Damping-matching Criterion for Flutter-based Piezoelectric Energy Harvesters

  • 摘要: 为提升驰振式压电能量俘获器的能量转化效率并克服大量数值仿真的低效性,本文基于Euler–Bernoulli梁理论、压电耦合、模态叠加法建立解析机电模型,推导出驰振起始风速、顶端位移与俘获功率的闭式表达,并将其与数值结果进行对比以确立模型的精度与适用域。解析结果揭示了负载电阻−等效电气阻尼的解析阻尼匹配判据:当可实现的电气阻尼达到最佳值时,可同时获得更低起始风速、更高功率与更小位移;当可实现的阻尼上限低于最佳值时,取最大可实现阻尼仍可获得接近最优的功率并有效抑制位移。研究进一步表明,最佳俘获功率随来流风速与气动经验系数增大而显著提升;当风速为18 m/s时,顶角30°等腰三角形钝体在最佳阻尼下的最佳功率约为正方形的3.71倍、较顶角53°等腰三角形提升2.85倍。上述解析阻尼匹配判据与设计指引为电路参数选取与钝体几何设计提供了快速、可操作的工程依据。

     

    Abstract: To improve the energy conversion efficiency of flutter-based piezoelectric energy harvesters and avoid the inefficiency of exhaustive numerical simulations, this study establishes an electromechanical model based on Euler–Bernoulli beam theory, piezoelectric coupling and modal superposition. Closed-form expressions are derived for the cut-in wind speed, tip displacement, and harvested power. These expressions are compared with numerical results to establish the model’s accuracy and domain of applicability. The analytical results establish the proposed damping-matching criterion, which links the load resistance to the equivalent electrical damping. When the achievable electrical damping reaches its optimal value, the model simultaneously achieves a lower cut-in speed, higher power output, and reduced displacement. When the maximum attainable damping falls below the optimal level, selecting the highest achievable damping still yields near-optimal power output while effectively suppressing displacement. Furthermore, the optimal harvested power increases markedly with free-stream velocity and with aerodynamic empirical coefficients. At a wind speed of 18 m/s, an isosceles triangular bluff body with a 30° apex angle under optimal damping achieves a peak power output that is 3.71 times that of a square prism and 2.85 times that of an isosceles triangular bluff body with a 53° apex angle. These analytical damping-matching criteria and design guidelines offer efficient and practical guidance for selecting circuit parameters and designing bluff-body geometries.

     

/

返回文章
返回