李千红, 冯镅, 杨词慧. 基于秩分解的文档图像倾斜校正[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 57-64. DOI: 10.3969/j.issn.2096-8566.2025.03.007
引用本文: 李千红, 冯镅, 杨词慧. 基于秩分解的文档图像倾斜校正[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 57-64. DOI: 10.3969/j.issn.2096-8566.2025.03.007
Qianhong LI, Mei FENG, Cihui YANG. Skew Correction of Document Images Based on Rank Decomposition[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 57-64. DOI: 10.3969/j.issn.2096-8566.2025.03.007
Citation: Qianhong LI, Mei FENG, Cihui YANG. Skew Correction of Document Images Based on Rank Decomposition[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 57-64. DOI: 10.3969/j.issn.2096-8566.2025.03.007

基于秩分解的文档图像倾斜校正

Skew Correction of Document Images Based on Rank Decomposition

  • 摘要: 在扫描纸质文档时,受文档摆放、文档厚度等因素影响,扫描得到的文档图像常常会产生倾斜问题。为解决这一问题,本文提出一种基于秩分解的文档图像倾斜校正方法。采用由“粗”到“精”的校正策略,首先对文档图像进行粗略倾斜角估计,再通过文档图像的全局投影,自动选定感兴趣区域,并基于感兴趣区域图像进行秩分解,最后根据不同精细角度下的秩解信息,找出最适宜的旋转角度,完成图像的倾斜校正。在DISEC'13竞赛的公开数据集上,选择平均误差(AED)、结果中前80%的平均误差(TOP80)2项性能指标,将本文方法与其他倾斜校正方法进行对比。结果表明,本文方法在校正倾斜扫描文档图像上展现出显著效果,在2项性能指标上均表现优异,能在减少运算量的同时保证较高的文档识别精度。

     

    Abstract: When scanning paper documents, the resulting document images are often suffer from skew issues due to factors such as document placement and thickness. skewed document images adversely affect subsequent digital processing procedures including layout analysis and text recognition, resulting in low recognition accuracy. To address this, a document image skew correction method based on rank decomposition is proposed. A coarse-to-fine correction strategy is adopted. Firstly, rough skew angle estimation is performed on the document image. Subsequently, the region of interest (ROI) is automatically selected through the global projection of the document image. Rank decomposition is then conducted on the ROI image. Finally, by analyzing the rank solution information under different fine-grained angles, the optimal rotation angle is identified to complete the skew correction of the image. On the public dataset of the DISEC'13 competition, two performance metrics, the Average Error Distance (AED) and Top-80% Average Error (TOP80), were selected to compare the proposed method with other skew correction approaches. The results demonstrate that the proposed method achieves superior effectiveness in correcting skewed scanned document images. It performs excellently in both performance metrics, and can reduce the computational complexity while ensuring high document recognition accuracy.

     

/

返回文章
返回