熊聪源, 张胜, 黄涛辉, 毛红梅, 王雨萱, 张伟萍. 基于有效距离引力模型的社区发现算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 46-56. DOI: 10.3969/j.issn.2096-8566.2025.03.006
引用本文: 熊聪源, 张胜, 黄涛辉, 毛红梅, 王雨萱, 张伟萍. 基于有效距离引力模型的社区发现算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 46-56. DOI: 10.3969/j.issn.2096-8566.2025.03.006
Congyuan XIONG, Sheng ZHANG, Taohui HUANG, Hongmei MAO, Yuxuan WANG, Weiping ZHANG. A Community Detection Algorithm Based on the Effective Distance Gravity Model[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 46-56. DOI: 10.3969/j.issn.2096-8566.2025.03.006
Citation: Congyuan XIONG, Sheng ZHANG, Taohui HUANG, Hongmei MAO, Yuxuan WANG, Weiping ZHANG. A Community Detection Algorithm Based on the Effective Distance Gravity Model[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 46-56. DOI: 10.3969/j.issn.2096-8566.2025.03.006

基于有效距离引力模型的社区发现算法

A Community Detection Algorithm Based on the Effective Distance Gravity Model

  • 摘要: 社区发现旨在挖掘复杂网络蕴含的社区结构,是复杂网络分析的重要任务之一。为了解决聚类算法在节点相似度相同时存在的节点聚类选择问题,本文引入能融合节点度和有效距离的引力模型,使相同节点对间的相似度具有非对称性,以更细粒度地刻画节点之间的相似性。算法步骤可分为两阶段:首先利用节点间相似性得到关联社区;然后通过模块度最大化来合并关联社区,得到网络最终的社区结构。通过对比实验发现,该算法在人工生成网络和真实网络中都能有效地识别出社区,与其他同类算法相比准确性都有所提高。

     

    Abstract: Community detection aims to uncover the intrinsic community structure embedded in complex networks, which is a critical task in complex network analysis. In order to solve the node clustering selection problem that arises in clustering algorithm when the node similarity values are the same, this paper introduces a gravity model that can integrate node degree and effective distance, so that the similarity between identical node pairs asymmetric, thereby enabling the characterization of inter-node similarity at a finer granularity. The algorithm proceeds in two stages: first, it leverages node similarity to derive the associated communities; then, it merges these communities by modularity maximization to yield the final network’s community structure. Through comparative experiments, it is found that the proposed algorithm can effectively identifies communities in both artificially generated networks and real-world networks, and it achieves superior accuracy compared with other state-of-the-art algorithms of the same category.

     

/

返回文章
返回