明万元, 陈瑞. 基于Bernoulli函数求解Fredholm积分方程的数值方法[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 42-45. DOI: 10.3969/j.issn.2096-8566.2025.03.005
引用本文: 明万元, 陈瑞. 基于Bernoulli函数求解Fredholm积分方程的数值方法[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 42-45. DOI: 10.3969/j.issn.2096-8566.2025.03.005
Wanyuan MING, Rui CHEN. A Class of Numerical Method for Solving Fredholm Integral Equations Based on Bernoulli Function[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 42-45. DOI: 10.3969/j.issn.2096-8566.2025.03.005
Citation: Wanyuan MING, Rui CHEN. A Class of Numerical Method for Solving Fredholm Integral Equations Based on Bernoulli Function[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 42-45. DOI: 10.3969/j.issn.2096-8566.2025.03.005

基于Bernoulli函数求解Fredholm积分方程的数值方法

A Class of Numerical Method for Solving Fredholm Integral Equations Based on Bernoulli Function

  • 摘要: 本文基于Bernoulli函数以及计算区间的非均匀划分,得到一种求解第二类Fredholm积分方程的高效算法,推广了经典的Euler-Maclaurin求和公式,并在一定假设条件下得到该格式的局部收敛阶为2。数值试验验证了所构造算法的理论收敛阶,证明了该算法在求解奇异积分方程中的优势。

     

    Abstract: Based on the Bernoulli function and a non-uniform partition of the computational interval, an efficient algorithm for solving second-kind Fredholm integral equations is proposed. This method extends the classical Euler-Maclaurin summation formula and achieves a local convergence order of 2 under certain assumptions. Numerical experiments validate the theoretical convergence order of the constructed algorithm and demonstrate its high efficiency in solving singular integral equations.

     

/

返回文章
返回