张存富, 陈龙胜, 赵天隆, 郭众民. 高阶多智能体系统鲁棒抗扰最优协同控制[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 1-15. DOI: 10.3969/j.issn.2096-8566.2025.03.001
引用本文: 张存富, 陈龙胜, 赵天隆, 郭众民. 高阶多智能体系统鲁棒抗扰最优协同控制[J]. 南昌航空大学学报(自然科学版), 2025, 39(3): 1-15. DOI: 10.3969/j.issn.2096-8566.2025.03.001
Cunfu ZHANG, Longsheng CHEN, Tianlong ZHAO, Zhongmin GUO. Robust Anti-disturbance Optimal Cooperative Control for High-order Multi-agent Systems[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 1-15. DOI: 10.3969/j.issn.2096-8566.2025.03.001
Citation: Cunfu ZHANG, Longsheng CHEN, Tianlong ZHAO, Zhongmin GUO. Robust Anti-disturbance Optimal Cooperative Control for High-order Multi-agent Systems[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(3): 1-15. DOI: 10.3969/j.issn.2096-8566.2025.03.001

高阶多智能体系统鲁棒抗扰最优协同控制

Robust Anti-disturbance Optimal Cooperative Control for High-order Multi-agent Systems

  • 摘要: 针对一类具有不确定性、动态干扰和状态不可测问题的高阶非线性多智能体系统,本文在有向通信拓扑下研究其分布式最优协同跟踪控制问题。首先,进行径向基神经网络、非线性状态观测器和非线性干扰观测器的耦合协同设计,以实现对系统不确定性、动态干扰和不可测状态的在线逼近和估计。在此基础上,基于Bellman最优原理和自适应动态规划,设计在多智能体一致性框架下针对高阶非线性多智能体系统的输出反馈分布式鲁棒抗扰最优反步协同控制器。最后,基于Lyapunov稳定理论严格证明了闭环系统的有界稳定性。各智能体均可在满足指定性能的前提下精确跟踪期望信号,仿真结果验证了所提方法的可行性和有效性。

     

    Abstract: The distributed optimal cooperative tracking control problem is investigated for a class of high-order nonlinear multi-agent systems (MASs) with uncertainties, external disturbances, unmeasurable states under directed communication topologies. First, a coupled cooperative design integrating radial basis function neural networks (RBFNNs) , nonlinear state observers (NSO), and nonlinear disturbance observers (NDO) is proposed to achieve online approximation and estimation of system uncertainties, dynamic disturbances, and unmeasurable states. On this basis, an output- feedback distributed robust anti-disturbance optimal backstepping cooperative controller for high-oeder nonlinear MASs is designed within the multi-agent consensus framework, by leveraging the Bellman optimality principle and adaptive dynamic programming. Finally, thebounded stability of the closed-loop system is rigorously proven based on Lyapunov stability theory. All agents can accurately track the desired signal while satiffying the predefined performance requirements. Simulation results verify the feasibility and effectiveness of the proposed method.

     

/

返回文章
返回