张琦琦, 赵炀. 一类偏微分方程的参数估计[J]. 南昌航空大学学报(自然科学版), 2025, 39(2): 50-55. DOI: 10.3969/j.issn.2096-8566.2025.02.007
引用本文: 张琦琦, 赵炀. 一类偏微分方程的参数估计[J]. 南昌航空大学学报(自然科学版), 2025, 39(2): 50-55. DOI: 10.3969/j.issn.2096-8566.2025.02.007
Qiqi ZHANG, Yang ZHAO. Parameter Estimation of a Class of Partial Differential Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(2): 50-55. DOI: 10.3969/j.issn.2096-8566.2025.02.007
Citation: Qiqi ZHANG, Yang ZHAO. Parameter Estimation of a Class of Partial Differential Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(2): 50-55. DOI: 10.3969/j.issn.2096-8566.2025.02.007

一类偏微分方程的参数估计

Parameter Estimation of a Class of Partial Differential Equations

  • 摘要: 本文利用分部积分法,结合刘维尔定理估计黎曼流形上方程 \Delta w = c(w - w^p - 1) 参数c的上界,精简当前已有结果的计算方法,且运用的计算方法有助于提供相应Sobolev型插值不等式中最优常数的估计和验证黎曼流形上Sobolev不等式在球面的最佳常数。

     

    Abstract: In this paper, the upper bounds of the parameter c for the equation \Delta w = c(w - w^p - 1) on Riemannian manifolds are estimated using the integration by parts method and Liouville's theorem, thereby simplifying the existing computational approaches. The computational methods employed are helpful in providing estimates of the optimal constants in the corresponding Sobolev-type interpolation inequalities and verifying the best constants of the Sobolev inequalities on Riemannian manifolds in the case of spheres.

     

/

返回文章
返回