刘或莹, 明万元. 一类延迟Volterra积分微分方程的两步配置法[J]. 南昌航空大学学报(自然科学版), 2025, 39(2): 43-49. DOI: 10.3969/j.issn.2096-8566.2025.02.006
引用本文: 刘或莹, 明万元. 一类延迟Volterra积分微分方程的两步配置法[J]. 南昌航空大学学报(自然科学版), 2025, 39(2): 43-49. DOI: 10.3969/j.issn.2096-8566.2025.02.006
Huoying LIU, Wanyuan MING. Two-Step Collocation Method for a Class of Delay Volterra Integro-Differential Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(2): 43-49. DOI: 10.3969/j.issn.2096-8566.2025.02.006
Citation: Huoying LIU, Wanyuan MING. Two-Step Collocation Method for a Class of Delay Volterra Integro-Differential Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(2): 43-49. DOI: 10.3969/j.issn.2096-8566.2025.02.006

一类延迟Volterra积分微分方程的两步配置法

Two-Step Collocation Method for a Class of Delay Volterra Integro-Differential Equations

  • 摘要: 本文在\theta -不变网格下构造一类求解非消失延迟Volterra积分微分方程的两步配置法,分析数值解的存在唯一性以及超收敛性质。最后,通过数值实验验证理论结果。

     

    Abstract: In this paper, a two-step collocation method is constructed on \theta -invariant meshes for solving Volterra integro-differential equations with non-vanishing delays. The existence, uniqueness, and superconvergence properties of the proposed numerical solution are analyzed. Finally, the theoretical results are verified by numerical experiments

     

/

返回文章
返回