邱昆, 王长坤. 基于改进YOLOv5s的钢铁表面缺陷检测模型研究[J]. 南昌航空大学学报(自然科学版), 2025, 39(2): 8-18. DOI: 10.3969/j.issn.2096-8566.2025.02.002
引用本文: 邱昆, 王长坤. 基于改进YOLOv5s的钢铁表面缺陷检测模型研究[J]. 南昌航空大学学报(自然科学版), 2025, 39(2): 8-18. DOI: 10.3969/j.issn.2096-8566.2025.02.002
Kun QIU, Changkun WANG. Study of steel surface defect detection model based on improved YOLOv5s[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(2): 8-18. DOI: 10.3969/j.issn.2096-8566.2025.02.002
Citation: Kun QIU, Changkun WANG. Study of steel surface defect detection model based on improved YOLOv5s[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(2): 8-18. DOI: 10.3969/j.issn.2096-8566.2025.02.002

基于改进YOLOv5s的钢铁表面缺陷检测模型研究

Study of steel surface defect detection model based on improved YOLOv5s

  • 摘要: 传统 YOLOv5 算法在进行钢铁表面缺陷检测时,面临缺陷尺度变化大、类别易混淆等挑战,这些挑战极大地增加了检测任务的难度,严重制约了 YOLOv5 在钢铁表面缺陷检测领域的应用性能。针对上述提到的一系列挑战,提出一种融合MobileViTv3和YOLOv5s的钢铁表面缺陷检测模型,以增强YOLOv5s的全局信息处理能力。在此基础上,为了实现不同尺度缺陷特征的高效融合,提出一种新的PGCSP块替换C3块,PGCSP块与GSConv一起组成新的颈部网络LWT-Neck。同时,为了进一步提升模型性能,引入新的损失函数WIoU,提升对小目标的检测效果,以解决目标尺度差异的问题。最后,在NEU-DET数据集上对改进模型进行验证。结果显示,改进后的模型可以实现实时检测,平均精度mAP为77.83%,比基线模型(YOLOv5s)提高约7.69%,比Faster R-CNN提高约4.27%。

     

    Abstract: The traditional YOLOv5 algorithm faces challenges such as significant variations in defect scales and high inter-class similarity during steel surface defect detection. These limitations greatly increase the difficulty of the detection task and significantly impair the performance of YOLOv5 in the field of defect detection on steel surfaces. To address the series of challenges mentioned above, a steel surface defect detection model by integrating MobileViTv3 with YOLOv5s is proposed to enhance the global information processing capability of YOLOv5s.Furthermore, to achieve the efficient fusion of multi-scale defect features, a novel PGCSP block is proposed to replace the C3 block, The PGCSP block, combined with GSConv, forms a new neck network LWT-Neck. Additionally, WIoU, a novel loss function, has been introduced to improve small object detection performance and mitigate scale-variation issues. Experimental validation on the NEU-DET dataset demonstrates that the proposed model achieves real-time detection with an average model accuracy (mAP) of 77.83%. This represents an improvement of 7.69% over the baseline YOLOv5s model and 4.27% over Faster R-CNN.

     

/

返回文章
返回