肖培湘, 龚剑, 田瑛文, 王飞, 易敏, 袁崇武. 基于CFD和Wells-Riley方程分析热羽流对病毒气溶胶传播的影响[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 100-107. DOI: 10.3969/j.issn.2096-8566.2025.01.011
引用本文: 肖培湘, 龚剑, 田瑛文, 王飞, 易敏, 袁崇武. 基于CFD和Wells-Riley方程分析热羽流对病毒气溶胶传播的影响[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 100-107. DOI: 10.3969/j.issn.2096-8566.2025.01.011
Peixiang XIAO, Jian GONG, Yingwen TIAN, Fei WANG, Min YI, Chongwu YUAN. Influence of Thermal Plumes on Spread of Viral Aerosol Based on CFD Simulation and Wells-Riley Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 100-107. DOI: 10.3969/j.issn.2096-8566.2025.01.011
Citation: Peixiang XIAO, Jian GONG, Yingwen TIAN, Fei WANG, Min YI, Chongwu YUAN. Influence of Thermal Plumes on Spread of Viral Aerosol Based on CFD Simulation and Wells-Riley Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 100-107. DOI: 10.3969/j.issn.2096-8566.2025.01.011

基于CFD和Wells-Riley方程分析热羽流对病毒气溶胶传播的影响

Influence of Thermal Plumes on Spread of Viral Aerosol Based on CFD Simulation and Wells-Riley Equation

  • 摘要: 在当前全球呼吸道传染病大流行的背景之下,对室内空气传播途径的研究引起了广泛关注,尤其是对办公室等人员密集环境中的呼吸道传染病传播机制研究。采用Fluent软件对多相流进行模拟,探讨不同人员密度的办公室环境下,人体热羽流的叠加效应对气溶胶传播的影响,并结合修正后的Wells-Riley方程估算易感者的感染概率。结果表明,在单人情况中,感染者咳嗽释放的气溶胶颗粒最大传播距离达到0.735 m;然而,当3人并排站立时,由于邻近人体产生的热羽流影响,中间感染者咳嗽释放的颗粒物传播距离减少至0.490 m。在恒定暴露时间条件下,中间感染者对其左右两侧易感者的感染概率分别为0.167%和0.191%;而对前方1 m处的易感者,感染概率为0.207%。当易感者位于2名感染者之间时,中间易感个体的感染概率显著上升至0.374%。由此可见,热羽流叠加会影响气溶胶传播距离,进而改变感染概率,在办公室等人员密集的环境中,应重视空间布局和人员分布的科学规划,优化室内通风模式。

     

    Abstract: In view of the background of the current global pandemic of respiratory infectious diseases, indoor airborne transmission routes has attracted widespread attention, especially the investigation of the transmission mechanism of respiratory infectious diseases in densely populated environments, such as offices. Fluent software was used to simulate the multiphase flow to explore the impact of the superposition effect of the human thermal plume on aerosol transmission in office environments with different personnel densities. By integrating the modified Wells-Riley equation, the infection probability of susceptible individuals was estimated. The results indicate that in the scenario with a single person, the aerosol particles released by the infected individual's cough traveled a maximum propagation distance of 0.735 m. However, when three individuals stand side by side, the thermal plume generated by neighboring human bodies results in the reduction of the propagation distance of the particles released by the cough of the infected person in the middle to 0.490 m. Under the condition of constant exposure time, the infection probability for the susceptible indiviuals to the left and right of the infected person is 0.167% and 0.191% respectively; for the susceptible person 1 m in front of the infected person, the infection probability is 0.207%. When a susceptible individual stands between two infected individuals, the infection probability for the person in the middle significantly increases to 0.374%. It is evident that thermal plume superposition affects the aerosol propagation distance, which in turn alters the infection probability. In densely populated environments like offices, it is crucial to focus on scientific planning of spatial layouts and personnel distribution to optimize the indoor ventilation patterns.

     

/

返回文章
返回