聂博凡, 陈飞龙, 孙成立, 盖杉. 退化复四元数多尺度特征融合去噪网络[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 50-59, 65. DOI: 10.3969/j.issn.2096-8566.2025.01.005
引用本文: 聂博凡, 陈飞龙, 孙成立, 盖杉. 退化复四元数多尺度特征融合去噪网络[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 50-59, 65. DOI: 10.3969/j.issn.2096-8566.2025.01.005
Bofan NIE, Feilong CHEN, Chengli SUN, Shan GAI. Reduced Biquaternion Multi-scale Feature Fusion Denoising Network[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 50-59, 65. DOI: 10.3969/j.issn.2096-8566.2025.01.005
Citation: Bofan NIE, Feilong CHEN, Chengli SUN, Shan GAI. Reduced Biquaternion Multi-scale Feature Fusion Denoising Network[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 50-59, 65. DOI: 10.3969/j.issn.2096-8566.2025.01.005

退化复四元数多尺度特征融合去噪网络

Reduced Biquaternion Multi-scale Feature Fusion Denoising Network

  • 摘要: 针对基于深度学习的去噪方法难以在高频细节区域和弱纹理区域等复杂去噪场景中,同时兼顾高质量的图像细节特征和图像色彩特征的问题,提出一种基于退化复四元数的多尺度特征融合去噪网络。该网络利用退化复四元卷积层和反卷积层作为主要特征提取块捕获和还原图像的特征,从而有效获取通道之间的关联性并学习图像色彩先验信息。同时设计了退化复四元通道注意力模块(Reduced Biquaternion Channel Attention Block, RQCAB)对多尺度的特征信息进行融合,以充分提取图像的局部细节特征。通过引入一种新的混合损失函数来监督训练过程,使网络获得更好的可视化结果。在3个去噪数据集上的去噪实验结果表明,所提出的方法获得了最高的平均PSNR指标31.08 dB,比先前最优的SOTA(state-of-the-art)去噪方法KBNet提高了0.7 dB,并且参数量和计算开销减少到2.49 × 106和25.00 × 109,是一种轻量且有效的去噪方法。

     

    Abstract: Previous deep learning-based denoising methods struggled to balance high-quality image details and color features in complex denoising scenes such as high-frequency detail regions and weak-texture regions. To address this issue, a multi-scale feature fusion denoising network based on reduced biquaternion (RQ) is proposed. The network utilizes RQ convolutional and deconvolutional layers as primary feature extraction blocks to capture and restore image features, which can effectively obtain inter-relationship between channels and learn color prior information of images. Additionally, a reduced biquaternion channel attention block (RQCAB) is designed to fuse multi-scale feature information, so as to fully extract local detail features of images. By introducing a new hybrid loss function to supervise the training process, the network achieves better visual results. The denoising experiments on three different denoising datasets demonstrate that the proposed method achieves the highest average PSNR of 31.08 dB, surpassing the previous state-of-the-art method KBNet by 0.7 dB, with a reduction in parameter and computational cost to 2.49 × 106 and 25.00 × 109, making it a lightweight and efficient denoising approach.

     

/

返回文章
返回