陶海波, 冯瑞娜, 阙启正, 储珺. 复杂背景大尺度变化的无人机目标跟踪[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 39-49. DOI: 10.3969/j.issn.2096-8566.2025.01.004
引用本文: 陶海波, 冯瑞娜, 阙启正, 储珺. 复杂背景大尺度变化的无人机目标跟踪[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 39-49. DOI: 10.3969/j.issn.2096-8566.2025.01.004
Haibo TAO, Ruina FENG, Qizheng QUE, Jun CHU. Object Tracking for UAV with Scale Changes and Complex Background[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 39-49. DOI: 10.3969/j.issn.2096-8566.2025.01.004
Citation: Haibo TAO, Ruina FENG, Qizheng QUE, Jun CHU. Object Tracking for UAV with Scale Changes and Complex Background[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 39-49. DOI: 10.3969/j.issn.2096-8566.2025.01.004

复杂背景大尺度变化的无人机目标跟踪

Object Tracking for UAV with Scale Changes and Complex Background

  • 摘要: 无人机目标跟踪场景复杂,目标移动速度快,导致被跟踪目标产生剧烈的尺度变化。注意力机制是解决复杂背景影响的常用方法,但现有的注意力机制只关注模板与搜索区域之间的关系,忽略了不同层次特征之间的相互依赖关系。针对以上问题,提出利用时空注意力机制结合时间和空间信息,对无人机跟踪的背景进行建模,解决背景复杂问题;为了缓解特征融合中注意力机制的高计算复杂度问题,在特征融合前进行Top-k操作,选择最相关的特征,并提取双重特征作为自适应锚框生成模块的输入特征,以解决目标尺度变化问题;最后,去除基线方法中损失函数的冗余权重,以提升训练效果和跟踪性能。实验结果表明,该算法在UAV数据集上跟踪准确率为76.6%,多个困难场景的跟踪准确率高于72%,可以减少尺度变化和外部因素对无人机目标跟踪性能的影响。

     

    Abstract: The scenario of UAV-based target tracking is complex, and the rapid movement speed of the target leads to significant scale variations in the tracked object. The attention mechanism is a prevalent method for dealing with the influence of complex backgrounds. However, existing attention mechanisms primarily focus on the relationship between the template and the search region, neglecting the interdependencies among features at different levels. To tackle these problems, this paper employs the spatiotemporal attention mechanism, integrating temporal and spatial information, to model the background in drone tracking and resolve the issue of complex backgrounds. Simultaneously, in order to alleviate the high computational complexity and instability of attention mechanisms in feature fusion, Top-k operations are performed before feature fusion to select the most relevant features. In addition, in the feature extraction stage, dual features are extracted as input features for the adaptive anchor box generation module to solve the problem of target scale changes. Finally, by removing baseline redundant weights from the loss function improves training effectiveness and tracking performance. Experimental results demonstrate that the proposed algorithm effectively mitigates the impact of scale variations and external factors on the performance of UAV-based target tracking. It achieves an accuracy of 76.6% on the UAV dataset, with accuracy exceeding 72% across multiple challenging scenarios.

     

/

返回文章
返回