程家睿, 周之平, 莫燕. 基于多尺度全局注意力和特征细化的协同显著性检测算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 29-38. DOI: 10.3969/j.issn.2096-8566.2025.01.003
引用本文: 程家睿, 周之平, 莫燕. 基于多尺度全局注意力和特征细化的协同显著性检测算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 29-38. DOI: 10.3969/j.issn.2096-8566.2025.01.003
Jiarui CHENG, Zhiping ZHOU, Yan MO. Co-salient Detection Algorithm based on Multi-scale Global Attention and Feature Refinement[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 29-38. DOI: 10.3969/j.issn.2096-8566.2025.01.003
Citation: Jiarui CHENG, Zhiping ZHOU, Yan MO. Co-salient Detection Algorithm based on Multi-scale Global Attention and Feature Refinement[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 29-38. DOI: 10.3969/j.issn.2096-8566.2025.01.003

基于多尺度全局注意力和特征细化的协同显著性检测算法

Co-salient Detection Algorithm based on Multi-scale Global Attention and Feature Refinement

  • 摘要: 在协同显著性检测中,由于忽视了全局注意力在提取共同特征中的重要性,以及忽略使用多尺度特征,现有算法仍然存在语义特征缺失、多显著目标场景下预测效果不佳等问题。为解决上述问题,本文提出一个新的协同显著性检测模型。该模型主要由全局共识生成模块和共识细化模块组成。全局共识生成模块旨在全局性地捕捉整组图像的共同特征即一致性,而共识细化模块主要用于对初步提取的一致性进行细化,防止多目标时的错检。在3个经典的公开数据集上的测试结果表明,该网络在Ma F_\mathrmm\text、E_\mathrmm\text、S_\mathrmm 4个指标上整体优于13种最先进的方法,并且具备更好的协同显著性信息检测性能;同时,消融实验的结果证明了新增模块的有效性。

     

    Abstract: In co-salient detection, due to the neglect of the importance of global attention in extracting common features and the neglect of the use of multi-scale features, the existing algorithms still have some problems, such as lack of semantic features and poor prediction in multi-significant target scenarios. To solve the above problems, this paper proposes a new co-salient detection model. The model is mainly composed of a global consensus generation module and a consensus refinement module. The global consensus generation module is designed to globally capture the common characteristic, specifically consistency, across the entire set of images. Meanwhile, the consensus refinement module is primarily utilized to refine the initially extracted consistency, effectively averting misdetection in the presence of multiple targets. The test results on three classical open data sets show that the network is better than the 13 most advanced methods in Ma, F_\mathrmm,E_\mathrmm,S_\mathrmm , and it also demonstrates better performance of collaborative saliency information detection. Additionally, the efficacy of the newly introduced module is validated through ablation experiments.

     

/

返回文章
返回