吴昊, 时招军, 杨词慧, 李千红. 基于因果表征学习的领域泛化算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 20-28. DOI: 10.3969/j.issn.2096-8566.2025.01.002
引用本文: 吴昊, 时招军, 杨词慧, 李千红. 基于因果表征学习的领域泛化算法[J]. 南昌航空大学学报(自然科学版), 2025, 39(1): 20-28. DOI: 10.3969/j.issn.2096-8566.2025.01.002
Hao WU, Zhaojun SHI, Cihui YANG, Qianhong LI. Domain Generalization Algorithm Based on Causal Representation Learning[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 20-28. DOI: 10.3969/j.issn.2096-8566.2025.01.002
Citation: Hao WU, Zhaojun SHI, Cihui YANG, Qianhong LI. Domain Generalization Algorithm Based on Causal Representation Learning[J]. Journal of nanchang hangkong university(Natural science edition), 2025, 39(1): 20-28. DOI: 10.3969/j.issn.2096-8566.2025.01.002

基于因果表征学习的领域泛化算法

Domain Generalization Algorithm Based on Causal Representation Learning

  • 摘要: 领域泛化(Domain Generalization,DG)的目的是将多源领域学习到的知识泛化应用到不可见的目标领域上。为了学习到独立于领域的表征,目前常用的方法是利用输入数据与标签之间的统计相关性来建模。然而,这些方法忽略了内在的因果机制,当统计相关性随目标域分布不同而发生变化时,统计模型会泛化失败。对此,本文提出了一种基于因果表征学习的领域泛化算法(Causal Representation Learning Domain Generalization,CRLDG),该算法先引入因果干扰机制,分离出源领域输入数据与标签之间的因果因素,然后对因果因素进行分解,得到独立于各个维度的因果表征。为了加强同一类别因果表征间的聚合性,引入中心对齐方法。在实验中,分别以ResNet-18和ResNet-50作为骨架网络,在PACS数据集上对CRLDG方法进行评估,其平均分类准确率分别达到84.75%和88.29%。此外,以ResNet-18作为网络骨架,在Office-Home数据集上对CRLDG方法进行实验评估,其平均分类准确率达到66.79%。总之,在所有对比方法中CRLDG方法具有最佳的性能,这一系列实验验证了CRLDG在PACS和Office-Home数据集上的有效性。

     

    Abstract: The objective of Domain Generalization (DG) is to generalize knowledge acquired from multiple source domains and apply it to unseen target domains. Current methods commonly rely on modeling the statistical correlation between input data and labels to learn representations independent of the domain. However, these approaches overlook the inherent causal mechanisms, leading to a failure in generalization when the statistical correlation changes with the distribution of the target domain. In response, this paper proposes a Domain Generalization algorithm based on Causal Representation Learning (CRLDG). This algorithm first introduces a causal interference mechanism to isolate the causal factors between the input data and labels in the source domain, and then decomposes these causal factors to obtain representations independent of each dimension. To enhance the aggregation of causal representations within the same category, a central alignment method is introduced. In the experiments, the CRLDG method was evaluated using ResNet-18 and ResNet-50 as the backbone networks on the PACS dataset, achieving average classification accuracies of 84.75% and 88.29%, respectively. Furthermore, when ResNet-18 was used as the network backbone of the Office-Home dataset, the CRLDG method achieved an average classification accuracy of 66.79%. In short, the CRLDG method outperformed all comparative methods, and the effectiveness of CRLDG on PACS and Office-Home datasets was validated through this series of experiments.

     

/

返回文章
返回