邱建鹏, 王子龙, 贾杰, 虞普, 刘西贝, 郑珊珊, 朱正吼, 袁志芬. 基于异库多机智能机巢的多无人机任务分配优化[J]. 南昌航空大学学报(自然科学版), 2024, 38(4): 74-84. DOI: 10.3969/j.issn.2096-8566.2024.04.010
引用本文: 邱建鹏, 王子龙, 贾杰, 虞普, 刘西贝, 郑珊珊, 朱正吼, 袁志芬. 基于异库多机智能机巢的多无人机任务分配优化[J]. 南昌航空大学学报(自然科学版), 2024, 38(4): 74-84. DOI: 10.3969/j.issn.2096-8566.2024.04.010
Jianpeng QIU, Zilong WANG, Jie JIA, Pu YU, Xibei LIU, Shanshan ZHENG, Zhenghou ZHU, Zhifen YUAN. Optimization of Multi-UAV Task Allocation Based on Heterogeneous Multi-drone Intelligent Nest[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(4): 74-84. DOI: 10.3969/j.issn.2096-8566.2024.04.010
Citation: Jianpeng QIU, Zilong WANG, Jie JIA, Pu YU, Xibei LIU, Shanshan ZHENG, Zhenghou ZHU, Zhifen YUAN. Optimization of Multi-UAV Task Allocation Based on Heterogeneous Multi-drone Intelligent Nest[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(4): 74-84. DOI: 10.3969/j.issn.2096-8566.2024.04.010

基于异库多机智能机巢的多无人机任务分配优化

Optimization of Multi-UAV Task Allocation Based on Heterogeneous Multi-drone Intelligent Nest

  • 摘要: 在异库多机智能机巢系统中,大规模无人机的协同作业能有效避免单机巢系统中因无人机故障导致的作业中断,具有广泛的应用前景。然而,现有研究多聚焦于小规模调度问题,且对大规模充电任务的调度考虑不足。针对异库多机智能机巢的调度优化问题,需综合考虑无人机路径规划、冲突避免及任务分配等多重因素。本文提出一种基于多机巢的无人机航线分配模型,考虑任务优先级,设计了一种改进的遗传算法进行任务分配。通过在多种环境约束条件下对该算法进行测试,进一步探讨遗传算法在大规模无人机航线分配中的应用效果。结果表明,该方法能够适应任务、环境及资源的变化,并在大规模异库多机智能机巢环境下展现出良好的任务分配效果。

     

    Abstract: In heterogeneous multi-drone intelligent nest systems, the cooperative operation of large-scale UAVs can effectively avoid the operation interruption caused by UAV failure in a single nest system, which has a broad application prospect. However, existing studies mainly focus on small-scale scheduling problems, while giving insufficient consideration to scheduling large-scale charging tasks. In order to solve the scheduling optimization problem of heterogeneous multi-drone intelligent nests, multiple factors such as UAV path planning, conflict avoidance, and task allocation must be considered comprehensively. In this paper, a UAV route allocation model based on multi-computer nests is proposed. With task priority considered, an improved genetic algorithm for task allocation is designed. The effectiveness of the genetic algorithm in large-scale UAV route assignment is further explored by testing the algorithm under multiple environmental constraints. The results show that the method can adapt to changes in tasks, environment, and resources, and it demonstrates a good task allocation effect in large-scale heterogeneous multi-drone intelligent nest environments.

     

/

返回文章
返回