黄斌, 符祥, 葛芸. 基于变形注意力机制和自适应特征融合的遥感目标检测方法[J]. 南昌航空大学学报(自然科学版), 2024, 38(4): 16-23, 32. DOI: 10.3969/j.issn.2096-8566.2024.04.002
引用本文: 黄斌, 符祥, 葛芸. 基于变形注意力机制和自适应特征融合的遥感目标检测方法[J]. 南昌航空大学学报(自然科学版), 2024, 38(4): 16-23, 32. DOI: 10.3969/j.issn.2096-8566.2024.04.002
Bin HUANG, Xiang FU, Yun GE. Remote Sensing Target Detection Method Based on Deformable Attention Mechanism and Adaptive Feature Fusion[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(4): 16-23, 32. DOI: 10.3969/j.issn.2096-8566.2024.04.002
Citation: Bin HUANG, Xiang FU, Yun GE. Remote Sensing Target Detection Method Based on Deformable Attention Mechanism and Adaptive Feature Fusion[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(4): 16-23, 32. DOI: 10.3969/j.issn.2096-8566.2024.04.002

基于变形注意力机制和自适应特征融合的遥感目标检测方法

Remote Sensing Target Detection Method Based on Deformable Attention Mechanism and Adaptive Feature Fusion

  • 摘要: 针对遥感图像背景复杂、多尺度特征融合时可能出现信息混叠的问题,提出一种变形注意力机制和自适应特征融合的遥感目标检测方法。首先,引入变形注意力模块,从具有多尺度可变形感受野的特征图中生成注意力图,以更好地适应不同尺度的遥感目标,并减少复杂背景对遥感目标检测的干扰。其次,采用自适应特征融合模块在每个尺度上自适应地学习空间权重,实现特征图的融合,使其更好地利用不同特征层之间的关系,突出每个尺度的独特信息,减少特征融合过程中出现的特征混叠。在光学遥感图像(DIOR)和遥感物体检测(RSOD)数据集上的实验结果表明,本文算法相比于其他算法具有较高的检测精度和速度。

     

    Abstract: To address the problem of information aliasing that may occur in remote sensing images with complex backgrounds and multi-scale features fusion, a remote sensing target detection method integrating the deformation attention mechanism and adaptive feature fusion is proposed. Firstly, the deformation attention module is introduced, and attention maps are generated from feature maps with multi-scale deformable receptive fields, which make the method adapt to different remote sensing targets better and reduce the interference of complex backgrounds on remote sensing object detection. Secondly, the adaptive feature fusion module that adaptively learns spatial weights at each scale is adopted. In this way, feature maps are fused to combine the relationships between different feature layers better, highlight the unique information of each scale, and reduce feature confusion during feature fusion. The experimental results on the Optical Remote Sensing Image (DIOR) and Remote Sensing Object Detection (RSOD) data sets show that the algorithm in this paper has higher detection accuracy and speed compared to other algorithms.

     

/

返回文章
返回