杨军. 一类非静态细分矩阵链乘积的精确计算及应用[J]. 南昌航空大学学报(自然科学版), 2024, 38(3): 63-71. DOI: 10.3969/j.issn.2096-8566.2024.03.006
引用本文: 杨军. 一类非静态细分矩阵链乘积的精确计算及应用[J]. 南昌航空大学学报(自然科学版), 2024, 38(3): 63-71. DOI: 10.3969/j.issn.2096-8566.2024.03.006
Jun YANG. Exact Evaluation and Application of a Class of Non-stationary Subdivision Matrix Chain Multiplication[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(3): 63-71. DOI: 10.3969/j.issn.2096-8566.2024.03.006
Citation: Jun YANG. Exact Evaluation and Application of a Class of Non-stationary Subdivision Matrix Chain Multiplication[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(3): 63-71. DOI: 10.3969/j.issn.2096-8566.2024.03.006

一类非静态细分矩阵链乘积的精确计算及应用

Exact Evaluation and Application of a Class of Non-stationary Subdivision Matrix Chain Multiplication

  • 摘要: 利用矩阵分块理论及特征分解技术对一类非静态细分模式的局部细分矩阵结构进行细致研究,得到细分矩阵链乘积的闭形式表达式,揭示该细分矩阵链乘积的代数结构。在此基础上提出一种可精确插值于极限曲线的细分算法,该算法在保持计算效率的同时,可显著提高细分结果的精度和质量。给出的造型实例表明了算法的有效性。

     

    Abstract: By employing matrix block theory and eigendecomposition techniques, a detailed investigation of the local subdivision matrix structure for a class of non-stationary subdivision schemes is conducted. A closed-form expression for the chain product of subdivision matrices is derived, uncovering the algebraic structure of this product. Building on this foundation, a subdivision algorithm is proposed that accurately interpolates limit curves, thereby improving the accuracy and quality of the subdivision schemes. The effectiveness of the algorithm is proved by provided modeling examples.

     

/

返回文章
返回