周恒, 肖文波, 李勇波, 吴华明. 基于猎人−猎物优化支持向量机的光伏阵列故障识别研究[J]. 南昌航空大学学报(自然科学版), 2024, 38(1): 93-104. DOI: 10.3969/j.issn.2096-8566.2024.01.012
引用本文: 周恒, 肖文波, 李勇波, 吴华明. 基于猎人−猎物优化支持向量机的光伏阵列故障识别研究[J]. 南昌航空大学学报(自然科学版), 2024, 38(1): 93-104. DOI: 10.3969/j.issn.2096-8566.2024.01.012
Heng ZHOU, Wen-bo XIAO, Yong-bo LI, Hua-ming WU. Research on Fault Diagnosis of Photovoltaic Array Based on Hunter-prey Optimization Support Vector Machine[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(1): 93-104. DOI: 10.3969/j.issn.2096-8566.2024.01.012
Citation: Heng ZHOU, Wen-bo XIAO, Yong-bo LI, Hua-ming WU. Research on Fault Diagnosis of Photovoltaic Array Based on Hunter-prey Optimization Support Vector Machine[J]. Journal of nanchang hangkong university(Natural science edition), 2024, 38(1): 93-104. DOI: 10.3969/j.issn.2096-8566.2024.01.012

基于猎人−猎物优化支持向量机的光伏阵列故障识别研究

Research on Fault Diagnosis of Photovoltaic Array Based on Hunter-prey Optimization Support Vector Machine

  • 摘要: 为提升光伏电站的运行效率,对光伏阵列的故障识别方法展开了深入研究,并建立基于猎人−猎物优化支持向量机(HPO-SVM)的故障识别方法。该方法以光伏阵列模型的5个参数作为故障特征向量对光伏阵列的故障进行识别,基于仿真数据和实验数据评估该方法的有效性和可靠性。在基于仿真数据进行故障识别时,HPO-SVM的识别准确率达到了99.5556%,十折交叉验证的平均准确率为98.2641%。与支持向量机(SVM)相比,HPO-SVM的准确率分别提高了8.4445%和8.6086%。在基于实验数据进行故障识别时,HPO-SVM的识别准确率达到了98.0645%,十折交叉验证的平均准确率为94.2995%。相较于SVM,HPO-SVM的准确率分别提高了7.7419%和4.5702%。结果表明,HPO-SVM对光伏阵列的故障识别具有较高的准确度、可靠性,并具有良好的泛化性能。

     

    Abstract: To enhance the operational efficiency of photovoltaic power plants, extensive research has been conducted on fault detection methods for photovoltaic arrays, and a fault detection method based on hunter-prey optimization support vector machine (HPO-SVM) has been established. This method utilizes five parameters of the photovoltaic array model as fault feature vectors for fault detection, and evaluates the effectiveness and reliability of the method based on simulation data and experimental data. When conducting fault detection based on simulation data, the recognition accuracy of HPO-SVM reached 99.5556%, with an average accuracy of 98.2641% in 10-fold cross-validation. Compared to support vector machine (SVM), the accuracy of HPO-SVM improved by 8.4445% and 8.6086% respectively. Similarly, on experimental data, the HPO-SVM achieves a recognition accuracy of 98.0645%, with an average accuracy of 94.2995% in 10-fold cross-validation, surpassing the SVM method by 7.7419% and 4.5702% respectively. These results highlight the superior accuracy, reliability, and generalization performance of the HPO-SVM approach.

     

/

返回文章
返回