郑华盛, 明万元, 袁达明. 重节点牛顿均差插值在微积分学中的应用[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 52-55, 65. DOI: 10.3969/j.issn.2096-8566.2023.04.007
引用本文: 郑华盛, 明万元, 袁达明. 重节点牛顿均差插值在微积分学中的应用[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 52-55, 65. DOI: 10.3969/j.issn.2096-8566.2023.04.007
Hua-sheng ZHENG, Wan-yuan MING, Da-ming YUAN. Application of Newton Interpolation with Multiple Nodes in Calculus[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(4): 52-55, 65. DOI: 10.3969/j.issn.2096-8566.2023.04.007
Citation: Hua-sheng ZHENG, Wan-yuan MING, Da-ming YUAN. Application of Newton Interpolation with Multiple Nodes in Calculus[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(4): 52-55, 65. DOI: 10.3969/j.issn.2096-8566.2023.04.007

重节点牛顿均差插值在微积分学中的应用

Application of Newton Interpolation with Multiple Nodes in Calculus

  • 摘要: 通过积分上限函数转化问题,基于重节点均差表及牛顿均差插值多项式确定辅助函数,构造和编制了一类含中介值的微积分等式证明题,得到了几个命题。

     

    Abstract: Through the original problem of transforming the integral upper limit function, the auxiliary function has been determined based on the divided difference table with multiple nodes and the Newton interpolation polynomial. A class of equalities in calculus with mean value have been constructed and compiled, and several propositions have been obtained.

     

/

返回文章
返回