张曼玉, 张春华. 具Dirichlet边界条件积分方程组的对称性研究[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 46-51. DOI: 10.3969/j.issn.2096-8566.2023.04.006
引用本文: 张曼玉, 张春华. 具Dirichlet边界条件积分方程组的对称性研究[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 46-51. DOI: 10.3969/j.issn.2096-8566.2023.04.006
Man-yu ZHANG, Chun-hua ZHANG. Research on the Symmetry of Integral Equations with Dirichlet Boundary Conditions[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(4): 46-51. DOI: 10.3969/j.issn.2096-8566.2023.04.006
Citation: Man-yu ZHANG, Chun-hua ZHANG. Research on the Symmetry of Integral Equations with Dirichlet Boundary Conditions[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(4): 46-51. DOI: 10.3969/j.issn.2096-8566.2023.04.006

具Dirichlet边界条件积分方程组的对称性研究

Research on the Symmetry of Integral Equations with Dirichlet Boundary Conditions

  • 摘要: 考虑如下具Dirichlet边值条件的积分方程组:   \left\ \begingathered u_i(x) = \int\limits_R_ + ^n G_i(x,y)f_i(\boldsymbolu)\rmdy,\text i = 1,2, \cdots ,m \text \\ \boldsymbolu = (u_1,u_2, \cdots ,u_m) \\ \endgathered \right.其中, R_ + ^n n维欧式空间的上半部分, G_i(x,y) R_ + ^n 中满足Dirichlet边值条件的格林函数,f_i(\boldsymbolu)( i = 1,2, \cdots ,m )是实值函数。本文假设积分方程组在 R_ + ^n 上存在满足一定可积性的正解 u_i ,利用积分形式的移动平面法,证明了正解 u_i 关于某条轴径向对称。

     

    Abstract: In this paper, we consider the following integral equations with Dirichlet boundary conditions: \left\ \begingathered u_i(x) = \int\limits_R_ + ^n G_i(x,y)f_i(\boldsymbolu)\rmdy,\text i = 1,2, \cdots ,m \text \\ \boldsymbolu = (u_1,u_2, \cdots ,u_m) \\ \endgathered \right. where R_ + ^n is the n-dimensional upper half Euclidean space, G_i(x,y) is the Green’s function with Dirichlet boundary conditions in R_ + ^n , f_i(\boldsymbolu) ( i = 1,2, \cdots ,m ) is real-valued function. In this paper, assuming that the system of integral equations has a positive solution u_i that satisfies certain integrability in R_ + ^n , and using the method of moving planes in integral forms, we prove that the positive solutions u_i is rotationally symmetric about some line.

     

/

返回文章
返回