蒋盼盼, 李宏, 梁昌武, 苏涛勇, 毛玥, 任智勇. 基于PCA-GA-BP神经网络的飞机飞行载荷预测研究[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 30-38. DOI: 10.3969/j.issn.2096-8566.2023.04.004
引用本文: 蒋盼盼, 李宏, 梁昌武, 苏涛勇, 毛玥, 任智勇. 基于PCA-GA-BP神经网络的飞机飞行载荷预测研究[J]. 南昌航空大学学报(自然科学版), 2023, 37(4): 30-38. DOI: 10.3969/j.issn.2096-8566.2023.04.004
Pan-pan JIANG, Hong LI, Chang-wu LIANG, Tao-yong SU, Yue MAO, Zhi-yong REN. Intelligent Flight Load Prediction Model Based on PCA-GA-BP Artificial Neural Network[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(4): 30-38. DOI: 10.3969/j.issn.2096-8566.2023.04.004
Citation: Pan-pan JIANG, Hong LI, Chang-wu LIANG, Tao-yong SU, Yue MAO, Zhi-yong REN. Intelligent Flight Load Prediction Model Based on PCA-GA-BP Artificial Neural Network[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(4): 30-38. DOI: 10.3969/j.issn.2096-8566.2023.04.004

基于PCA-GA-BP神经网络的飞机飞行载荷预测研究

Intelligent Flight Load Prediction Model Based on PCA-GA-BP Artificial Neural Network

  • 摘要: 飞行载荷的获取对飞机设计、飞机可靠性评估、飞机寿命监控等有着重要影响。为获取高精度飞行载荷,本文通过主成分分析(Principal Component Analysis, PCA)及遗传算法(Genetic Algorithm, GA)优化BP神经网络,建立了PCA-GA-BP神经网络。将某飞机飞行的飞行参数作为输入,飞行载荷作为输出,对PCA-GA-BP神经网络进行训练和预测,并将其预测结果与传统BP神经网络和PCA-BP神经网络的预测结果进行对比。结果表明:PCA-GA-BP神经网络预测精度最高,且误差波动最小,平均相对误差为5.79%,最小相对误差为0.07%。综上,PCA-GA-BP神经网络具有较高的预测精度并且网络收敛速度极快,是一种预测飞行载荷的优良模型。

     

    Abstract: The acquisition of flight loads has an important impact on aircraft design, aircraft reliability assessment, and aircraft life monitoring. In order to obtain high accuracy flight load, this paper establishes PCA-GA-BP neural network through principal component analysis and genetic algorithm-optimized BP neural network. In this paper, the flight parameters of an aircraft flight are taken as the input and the flight load is taken as the output. The PCA-GA-BP neural network is trained and predicted, and the prediction results are compared with those of the traditional BP neural network and PCA-BP neural network. The results show that the PCA-GA-BP neural network has the highest prediction accuracy and the smallest error fluctuation, with an average relative error of 5.79% and a minimum relative error of 0.07%. In summary, the PCA-GA-BP neural network is an excellent model for predicting flight loads because of its high prediction accuracy and extremely fast network convergence.

     

/

返回文章
返回