蔡昊, 李军华, 周成. 基于改进麻雀搜索算法的特征选择在入侵检测中的应用[J]. 南昌航空大学学报(自然科学版), 2023, 37(2): 70-77, 100. DOI: 10.3969/j.issn.2096-8566.2023.02.009
引用本文: 蔡昊, 李军华, 周成. 基于改进麻雀搜索算法的特征选择在入侵检测中的应用[J]. 南昌航空大学学报(自然科学版), 2023, 37(2): 70-77, 100. DOI: 10.3969/j.issn.2096-8566.2023.02.009
Hao CAI, Jun-hua LI, Cheng ZHOU. Application of Feature Selection Based on Improved Sparrow Search Algorithm in Intrusion Detection[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(2): 70-77, 100. DOI: 10.3969/j.issn.2096-8566.2023.02.009
Citation: Hao CAI, Jun-hua LI, Cheng ZHOU. Application of Feature Selection Based on Improved Sparrow Search Algorithm in Intrusion Detection[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(2): 70-77, 100. DOI: 10.3969/j.issn.2096-8566.2023.02.009

基于改进麻雀搜索算法的特征选择在入侵检测中的应用

Application of Feature Selection Based on Improved Sparrow Search Algorithm in Intrusion Detection

  • 摘要: 机器学习在入侵检测中发挥着至关重要的作用,特征选择作为机器学习的关键预处理步骤,受到广大研究者的关注。针对麻雀搜索算法寻优能力强但易陷入局部最优的问题,本文对特征编码、位置更新等策略进行改进,提出一种多策略融合的二进制麻雀搜索算法,结合决策树分类器构造封装式特征选择算法,从高维特征空间中选择具有代表性的特征,以提高模型的预测能力并降低时间成本。基于NSL-KDD和UNSW-NB15数据集进行了性能评估,实验结果表明:与多种特征选择算法相比,利用该算法进行特征选择后的数据具有最佳二分类效果。

     

    Abstract: Machine learning plays an important role in intrusion detection. As a key preprocessing step of machine learning, feature selection has attracted the attention of many researchers. Aiming at solving the problem that sparrow search algorithm has strong optimization ability but easy to fall into local optimization, this study improved the strategies of feature encoding and location update. A multi strategy mixed binary sparrow search algorithm was proposed, which combined a decision tree classifier to construct wrapped feature selection algorithm and selected representative features from high-dimensional feature space to improve the prediction ability of the model and reduce the time cost. The performance of this algorithm was evaluated based on NSL-KDD and UNSW-NB15 datasets. The experimental results show that compared with various feature selection algorithms, the data after feature selection using the algorithm proposed in this work has the best binary classification effect.

     

/

返回文章
返回