杨荟聪, 周之平, 莫燕. 一种融合多尺度残差和门控卷积的图像修复算法[J]. 南昌航空大学学报(自然科学版), 2023, 37(2): 42-51. DOI: 10.3969/j.issn.2096-8566.2023.02.006
引用本文: 杨荟聪, 周之平, 莫燕. 一种融合多尺度残差和门控卷积的图像修复算法[J]. 南昌航空大学学报(自然科学版), 2023, 37(2): 42-51. DOI: 10.3969/j.issn.2096-8566.2023.02.006
Hui-cong YANG, Zhi-ping ZHOU, Yan MO. An Image Inpainting Algorithm Combining Multi-scale Residues and Gated Convolution[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(2): 42-51. DOI: 10.3969/j.issn.2096-8566.2023.02.006
Citation: Hui-cong YANG, Zhi-ping ZHOU, Yan MO. An Image Inpainting Algorithm Combining Multi-scale Residues and Gated Convolution[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(2): 42-51. DOI: 10.3969/j.issn.2096-8566.2023.02.006

一种融合多尺度残差和门控卷积的图像修复算法

An Image Inpainting Algorithm Combining Multi-scale Residues and Gated Convolution

  • 摘要: 为了克服图像修复中出现的边缘模糊和视觉伪影问题,该文提出一种融合多尺度残差和门控卷积的图像修复算法。该算法模型由边缘生成网络和纹理修补网络组成。首先,通过多层卷积和多尺度残差块提取出图像边缘信息,对受损区域的边缘进行补全;然后,将生成的边缘图像作为结构性先验知识,并利用门控卷积来消除无效像素对掩码更新的干扰,实现局部纹理的精细填充。在Places2和CelebA基准数据集上的实验结果表明,该算法在各项评价指标上均优于现有主流算法,其PSNR提高了2.1%~2.6%,SSIM提高了1.6%~2.3%,L1损失降低了6.5%~9.9%。

     

    Abstract: In order to overcome the problems of edge blur and ghost shadow in image inpainting, a novel inpainting algorithm is proposed in this paper. The algorithm integrates both multi-scale residual blocks and gated convolution operation. The architecture consists of an edge generation network and a texture repair network. Firstly, the algorithm utilizes both multi-layer convolution and multi-scale residual blocks to extract the edges which guide the completion of the damaged area. Secondly, generated edge image is treated as a structural priority and gated convolution is used to eliminate the interference of invalid pixels on updated mask. This results in final image with fine local texture. Experimental results on two benchmark datasets, namely Places2 and CelebA, indicate the proposed algorithm surpasses existing mainstream algorithms in all indicators. It provides PSNR improvement of 2.1%~2.6%, SSIM improvement of 1.6%~2.3% and L1 loss reduction of 6.5%~9.9% totally.

     

/

返回文章
返回