龚志豪, 蒋沅, 代冀阳. 基于范德华力的节点重要性评估算法[J]. 南昌航空大学学报(自然科学版), 2023, 37(2): 1-9. DOI: 10.3969/j.issn.2096-8566.2023.02.001
引用本文: 龚志豪, 蒋沅, 代冀阳. 基于范德华力的节点重要性评估算法[J]. 南昌航空大学学报(自然科学版), 2023, 37(2): 1-9. DOI: 10.3969/j.issn.2096-8566.2023.02.001
Zhi-hao GONG, Yuan JIANG, Ji-yang DAI. Node Importance Evaluation Algorithm Based on Van der Waals Force[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(2): 1-9. DOI: 10.3969/j.issn.2096-8566.2023.02.001
Citation: Zhi-hao GONG, Yuan JIANG, Ji-yang DAI. Node Importance Evaluation Algorithm Based on Van der Waals Force[J]. Journal of nanchang hangkong university(Natural science edition), 2023, 37(2): 1-9. DOI: 10.3969/j.issn.2096-8566.2023.02.001

基于范德华力的节点重要性评估算法

Node Importance Evaluation Algorithm Based on Van der Waals Force

  • 摘要: 精准度量复杂网络中节点的重要程度有助于研究网络的抗毁性和鲁棒性。为弥补现有算法评估角度片面的局限性,该文将范德华力引入复杂网络中,将网络中的节点映射为分子或原子,并将节点的度值表示为分子或原子的范德华常量,用范德华力来定义节点的影响力,综合考虑节点间路径信息的占比率,提出一种基于范德华力的重要节点挖掘算法VDWF(Van der Waals Force)。该算法兼顾网络的局部信息以及全局拓扑结构等特征。为验证该算法的有效性与适用性,分别采用单调性指标、网络效率以及极大连通系数等作为评估指标,并选取6个不同领域的真实数据集与其它算法进行对照实验。结果表明,范德华力算法能够更加有效地挖掘复杂网络中的重要节点,精准区分不同节点的重要性差异。

     

    Abstract: Accurately measuring the importance of nodes in a complex network helps to study the resistance to destruction and robustness of the network. To compensate for the limitations of existing algorithms in assessing one-sided perspectives, this paper introduces Van der Waals Force into complex networks. It maps the nodes in the network as molecules or atoms, and represents the degree of nodes as Van der Waals constants of molecules or atoms. It defines the influence of nodes in terms of Van der Waals Force, takes into account the percentage of path information between nodes, and proposes a Van der Waals Force-based important node mining algorithm called VDWF (Van der Waals Force). This algorithm considers both the local information of the network and the global topology. To verify the effectiveness and applicability of the algorithm, monotonicity index, network efficiency, and great connectivity coefficient are used as evaluation indices. Six real data sets from different domains are selected for control experiments with other algorithms. The results show that the Van der Waals Force algorithm can more effectively mine important nodes in complex networks and accurately distinguish the differences in the importance of different nodes.

     

/

返回文章
返回