杨姗, 江慎铭. 一类多维连续小波逆变换的逐点收敛性[J]. 南昌航空大学学报(自然科学版), 2022, 36(4): 43-48. DOI: 10.3969/j.issn.2096-8566.2022.04.007
引用本文: 杨姗, 江慎铭. 一类多维连续小波逆变换的逐点收敛性[J]. 南昌航空大学学报(自然科学版), 2022, 36(4): 43-48. DOI: 10.3969/j.issn.2096-8566.2022.04.007
Shan YANG, Shen-ming JIANG. Pointwise Convergence of a Class of Multi-dimensional Continuous Wavelet Inverse Transform[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(4): 43-48. DOI: 10.3969/j.issn.2096-8566.2022.04.007
Citation: Shan YANG, Shen-ming JIANG. Pointwise Convergence of a Class of Multi-dimensional Continuous Wavelet Inverse Transform[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(4): 43-48. DOI: 10.3969/j.issn.2096-8566.2022.04.007

一类多维连续小波逆变换的逐点收敛性

Pointwise Convergence of a Class of Multi-dimensional Continuous Wavelet Inverse Transform

  • 摘要: 研究了多维连续小波逆变换的逐点收敛性。首先引入一类多维连续小波,这类多维连续小波变换具有高频时,小移动,低频时,大移动的特点;其次讨论了这类多维连续小波的逐点收敛性,给出了这类多维连续小波逆变换逐点收敛成立的一个充分条件。

     

    Abstract: In this work, a pointwise convergence of multi-dimensional continuous wavelet inverse transform was studied. Firstly, a kind of multi-dimensional continuous wavelet transform was introduced, which features small shift at high frequency and large shift at low frequency. Secondly, the pointwise converfence of muti-dimensional continuous wavelet was discussed, and a sufficient condition for the pointwise convergence of this multi-dimensional continuous wavelet inverse transform was given.

     

/

返回文章
返回