邓可郁, 张弛, 卢锋, 李楠, 陈震, 张聪炫. 联合特征−空间金字塔和自适应特征更新的多目标跟踪[J]. 南昌航空大学学报(自然科学版), 2022, 36(3): 91-99. DOI: 10.3969/j.issn.2096-8566.2022.03.008
引用本文: 邓可郁, 张弛, 卢锋, 李楠, 陈震, 张聪炫. 联合特征−空间金字塔和自适应特征更新的多目标跟踪[J]. 南昌航空大学学报(自然科学版), 2022, 36(3): 91-99. DOI: 10.3969/j.issn.2096-8566.2022.03.008
Ke-yu DENG, Chi ZHANG, Feng LU, Nan LI, Zhen CHEN, Cong-xuan ZHANG. Joint Feature-Space Pyramid and Adaptive Feature Updating for Multi-Object Tracking[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(3): 91-99. DOI: 10.3969/j.issn.2096-8566.2022.03.008
Citation: Ke-yu DENG, Chi ZHANG, Feng LU, Nan LI, Zhen CHEN, Cong-xuan ZHANG. Joint Feature-Space Pyramid and Adaptive Feature Updating for Multi-Object Tracking[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(3): 91-99. DOI: 10.3969/j.issn.2096-8566.2022.03.008

联合特征−空间金字塔和自适应特征更新的多目标跟踪

Joint Feature-Space Pyramid and Adaptive Feature Updating for Multi-Object Tracking

  • 摘要: 针对拥挤遮挡场景下多目标跟踪准确性和鲁棒性较差的问题,本文提出联合特征−空间金字塔和自适应特征更新的多目标跟踪算法。首先,在特征金字塔网络中引入结合通道注意力机制的空间金字塔池化模块,构建基于特征−空间金字塔的目标跟踪特征提取网络。其次,在网络输出端引入并行行人重识别任务分支,对检测到的目标进行特征提取。最后设计基于加权自适应特征更新的数据关联算法,在显著提高目标跟踪准确性的同时增强目标关联的可靠性。分别采用MOT16和MOT17测试集对本文方法和现有的代表性方法进行综合对比与分析,实验结果证明了所提方法的有效性,并且能够显著提高多目标跟踪的准确性和鲁棒性。

     

    Abstract: To address the problem of poor target tracking accuracy and robustness in the crowded cover scene, we propose a joint feature-space pyramid and adaptive feature update for multi-object tracking. Firstly, a spatial pyramid pooling module combined with channel attention mechanism is introduced into the feature pyramid network, and a feature extraction network for target tracking based on feature-spatial pyramid is constructed. Secondly, we introduce a parallel person re-identification task branch at the network output to perform feature extraction on the detected objects. Finally, a data association algorithm based on weighted adaptive feature update is designed, which not only improves the accuracy of target tracking, but also enhances the reliability of target association. The MOT16 and MOT17 test sets are used for comprehensive comparison and analysis of the method proposed in this study and the existing representative methods. The experimental results demonstrate the effectiveness of the proposed method and its capacity to significantly improve the accuracy and robustness of multi-object tracking.

     

/

返回文章
返回