毕艳会, 陈丹露, 张明同. Hom-Leibniz-Rinehart代数的交叉模[J]. 南昌航空大学学报(自然科学版), 2022, 36(1): 28-32. DOI: 10.3969/j.issn.2096-8566.2022.01.005
引用本文: 毕艳会, 陈丹露, 张明同. Hom-Leibniz-Rinehart代数的交叉模[J]. 南昌航空大学学报(自然科学版), 2022, 36(1): 28-32. DOI: 10.3969/j.issn.2096-8566.2022.01.005
Yan-hui BI, Dan-lu CHEN, Ming-tong ZHANG. Crossed Modules of Hom-Leibniz-Rinehart Algebras[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(1): 28-32. DOI: 10.3969/j.issn.2096-8566.2022.01.005
Citation: Yan-hui BI, Dan-lu CHEN, Ming-tong ZHANG. Crossed Modules of Hom-Leibniz-Rinehart Algebras[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(1): 28-32. DOI: 10.3969/j.issn.2096-8566.2022.01.005

Hom-Leibniz-Rinehart代数的交叉模

Crossed Modules of Hom-Leibniz-Rinehart Algebras

  • 摘要: 在前人研究的基础上,对Hom-非交换代数做了进一步研究。首先,给出了关于Hom-Leibniz-Rinehart代数上Hom-作用的定义。其次,在Hom-Leibniz-Rinehart代数和Hom-Leibniz A-代数的直和代数上定义了左锚映射、右锚映射和自同态,使二者构成半直积结构,证明了其Hom-作用与Hom-Leibniz-Rinehart代数之间存在一一对应的关系。最后,给出了Hom-Leibniz-Rinehart代数交叉模的定义,证明了其交叉模与代数同态之间的等价关系。

     

    Abstract: On the basis of previous studies, Hom-noncommutative algebra is further studied. Firstly, the definition of Hom-action on Hom-Leibniz-Rinehart algebra is given. Secondly, on the directsum of Hom-Leibniz-Rinehart algebras and Hom-Leibniz A-algebras, it is defined that the left anchor, right anchor and endomorphism are semi-direct products, and it is proved that there is a one-to-one correspondence between their actions and Hom-Leibniz-Rinehart-algebras. Finally, the cross module of Hom-Leibniz-Rinehart algebra is defined, and the corresponding relationship between cross module and algebraic homomorphism is proved.

     

/

返回文章
返回