赵紫琳, 邓定文. 一维Fisher-KPP方程的高阶显式Richardson外推法[J]. 南昌航空大学学报(自然科学版), 2022, 36(1): 17-22. DOI: 10.3969/j.issn.2096-8566.2022.01.003
引用本文: 赵紫琳, 邓定文. 一维Fisher-KPP方程的高阶显式Richardson外推法[J]. 南昌航空大学学报(自然科学版), 2022, 36(1): 17-22. DOI: 10.3969/j.issn.2096-8566.2022.01.003
Zi-lin ZHAO, Ding-wen DENG. High-order Explicit Richardson Extrapolation Method for One-dimensional Fisher-KPP Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(1): 17-22. DOI: 10.3969/j.issn.2096-8566.2022.01.003
Citation: Zi-lin ZHAO, Ding-wen DENG. High-order Explicit Richardson Extrapolation Method for One-dimensional Fisher-KPP Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2022, 36(1): 17-22. DOI: 10.3969/j.issn.2096-8566.2022.01.003

一维Fisher-KPP方程的高阶显式Richardson外推法

High-order Explicit Richardson Extrapolation Method for One-dimensional Fisher-KPP Equation

  • 摘要: 通过研究一维 Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) 方程的显式差分格式,并运用能量分析法证明了当 r = \alpha \dfrac\tau h^2 \leqslant \dfrac12 时差分格式的解是有界的,且在无穷范数意义下有 O\left( \tau + h^2 \right) 的收敛阶。然后发展了三种 \textRichardson外推法,分别得到收敛阶为O\left( \tau ^2 + h^2 \right),O\left( \tau + h^4 \right)O\left( \tau^2 + h^4 \right)的外推解。数值实验表明,数值结果与理论结果是吻合的。

     

    Abstract: In this paper, an explicit difference scheme is studied for Fisher-Kolmogorov-Petrovsky-Piscounov equation. The energy analysis method is used to prove that the solution of the difference scheme is bounded when r = \alpha \dfrac\tau h^2 \leqslant \dfrac12 . It is proved that it has a convergence order of O\left( \tau + h^2 \right) in maximum norm. Then, the extrapolation solutions with convergence orders of O\left( \tau ^2 + h^2 \right) or O\left(\tau + h^4\right) or O\left(\tau^2 + h^4\right) are obtained, by developing three Richardson extrapolation methods. Finally, a numerical example is given to confirm that the numerical results are consistent with the theoretical results.

     

/

返回文章
返回