胡柳青, 赵刚. 基于数据挖掘下机器学习算法对学生成绩影响因素的研究[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 43-48, 97. DOI: 10.3969/j.issn.2096-8566.2021.03.007
引用本文: 胡柳青, 赵刚. 基于数据挖掘下机器学习算法对学生成绩影响因素的研究[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 43-48, 97. DOI: 10.3969/j.issn.2096-8566.2021.03.007
Liu Qing HU, Gang ZHAO. Research on Influencing Factors of Machine Learning Algorithm on Student Achievement Based on Data Mining[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(3): 43-48, 97. DOI: 10.3969/j.issn.2096-8566.2021.03.007
Citation: Liu Qing HU, Gang ZHAO. Research on Influencing Factors of Machine Learning Algorithm on Student Achievement Based on Data Mining[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(3): 43-48, 97. DOI: 10.3969/j.issn.2096-8566.2021.03.007

基于数据挖掘下机器学习算法对学生成绩影响因素的研究

Research on Influencing Factors of Machine Learning Algorithm on Student Achievement Based on Data Mining

  • 摘要: 为了研究影响学生成绩的因素,更好地帮助学生学习,教师进行教学和学校管理。利用数据挖掘(DataMining)中机器学习决策树(DecisionTree)算法对原始数据选取,特征分类和数据预处理归一化。标签编码(LabelEcode)可以在有效降低数据维度的同时保证分类精度量化。本文的数据选自国外某一个高中年级的相关数据,包括学生在校的期末考试的成绩,家庭背景及在校学习行为等数据。通过sklearn,seaborn和matplotlib等软件来实现决策树算法,生成离线模型和学业指标评估报告,来更好完成对学生成绩预测影响因素的研究。

     

    Abstract: In order to study the factors that affect students’ achievement and better help students learn, teachers carry out teaching and school management, the Data Mining technology (Data Mining) was adopted on the existing original data, and the machine Learning algorithm (Deep Learning) was used to analyze the student data, and a classification prediction model was built. Decision Tree algorithm in machine learning is employed to select data, classify features, and normalize data preprocessing. Label Ecode tag encoding can effectively reduce data dimension and ensure classification accuracy quantization. The data in this paper are from the family background data and school examination data of foreign high school students. Sklearn, Seaborn, Matplotlib and other software are used to realize decision tree algorithm, generate off-line model and academic index evaluation report, so as to better complete the research on influencing factors of student achievement prediction.

     

/

返回文章
返回