孙晨, 吴诗弈, 张波, 莫国美. 基于改进型Stackelberg博弈的异构蜂窝网络干扰协调算法[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 16-24. DOI: 10.3969/j.issn.2096-8566.2021.03.003
引用本文: 孙晨, 吴诗弈, 张波, 莫国美. 基于改进型Stackelberg博弈的异构蜂窝网络干扰协调算法[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 16-24. DOI: 10.3969/j.issn.2096-8566.2021.03.003
Chen SUN, Shi-yi WU, Bo ZHANG, Guo-mei MO. An Evolved Stackelberg Game Based Interference Coordination Algorithm in Heterogeneous Cellular Networks[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(3): 16-24. DOI: 10.3969/j.issn.2096-8566.2021.03.003
Citation: Chen SUN, Shi-yi WU, Bo ZHANG, Guo-mei MO. An Evolved Stackelberg Game Based Interference Coordination Algorithm in Heterogeneous Cellular Networks[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(3): 16-24. DOI: 10.3969/j.issn.2096-8566.2021.03.003

基于改进型Stackelberg博弈的异构蜂窝网络干扰协调算法

An Evolved Stackelberg Game Based Interference Coordination Algorithm in Heterogeneous Cellular Networks

  • 摘要: 本研究使用Stackelberg博弈模型来研究未来5G异构蜂窝网络中宏蜂窝和小蜂窝之间的干扰协调问题。考虑到异构组网的限制,考虑了资源分配和功率控制进行分布式决策的干扰协调场景,将资源分配和功率控制问题转化为2步博弈:首先,由小蜂窝决策的跟随者博弈中,根据成本参数计算出小蜂窝链路的发射功率;其次,在宏蜂窝决策的领导者博弈中,根据上步得出的小蜂窝链路发射功率,以及成本参数等其他条件,通过最优匹配算法得出小蜂窝和宏蜂窝的配对,进而实现资源的分配。由于成本参数是影响博弈结果的重要变量,提出了一种基于强化学习的成本参数改进方法以优化博弈性能。从仿真结果可以证明,比起随机接入和固定发射功率的贪婪接入,这种基于改进型Stackelberg博弈的干扰协调算法具有较明显的性能优势。

     

    Abstract: In this paper, interference coordination between the macro cells and the small cells in future 5G heterogeneous cellular networks were studied by applying Stackelberg gaming model. Considering the network architecture, this study focused on the interference coordination problem where the decisions of resource allocation and power control are distributed. The joint resource allocation and power control problem was formulated into a two-step Stackelberg Game model. Firstly, in the follower game decided by the small cells, the transmitting power levels of the small cell links are calculated according to the cost parameters; secondly, in the leader game determined by the macro cells, an optimal matching algorithm is proposed to obtain the pairing and resource allocation of small cells and macro cells, based on the small cell power, cost parameters and channel parameters obtained in the previous step. Since the cost parameter is an important variable that affects the outcome of the game, a cost parameter evolved method based on reinforcement learning is proposed. The simulation results demonstrated that compared with the random-access algorithm and the greedy-access and fixed transmitting power algorithm, the proposed evolved Stackelberg Game based interference coordination algorithm can acquire obvious performance promotion.

     

/

返回文章
返回