储珺, 林文杰, 徐鹏. 目标检测中特征不匹配问题研究进展[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 1-8. DOI: 10.3969/j.issn.2096-8566.2021.03.001
引用本文: 储珺, 林文杰, 徐鹏. 目标检测中特征不匹配问题研究进展[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 1-8. DOI: 10.3969/j.issn.2096-8566.2021.03.001
Jun CHU, Wen-jie LIN, Peng XU. Reviews of Feature Mismatch in Object Detection[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(3): 1-8. DOI: 10.3969/j.issn.2096-8566.2021.03.001
Citation: Jun CHU, Wen-jie LIN, Peng XU. Reviews of Feature Mismatch in Object Detection[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(3): 1-8. DOI: 10.3969/j.issn.2096-8566.2021.03.001

目标检测中特征不匹配问题研究进展

Reviews of Feature Mismatch in Object Detection

  • 摘要: 近年来基于深度卷积神经网络的目标检测器取得了跨越式进展,远远超过传统目标检测算法。但最新的研究表明特征不匹配问题已经成为深度目标检测器性能提升的一个瓶颈。目前在该问题的研究尚未有清晰的总结,因此本文首先对特征不匹配问题进行分析,提出特征不匹配问题的本质是由于目标检测的分类和回归任务优化目标的不一致造成,同时分析了特征不匹配对于目标检测中密集预测策略的影响,认为特征不匹配会造成分类响应和回归响应不一致。然后分别介绍了特征不匹配和响应不一致问题目前的解决方案。最后进行总结,提出了特征不匹配问题需要同时考虑响应不一致问题,并给出了一体化的解决方案。

     

    Abstract: The deep CNN-based object detector has achieved a remarkable grade in recent year, which far exceeds the traditional counterparts. However, the near researches show that the feature mismatch problem has become a bottleneck to further improve performance. Consider a clear summary on the problem has not yet been collected, this paper firstly takes a deep analysis. And points out that that feature mismatch is essentially caused by the different optimization objectives of classification task and regression task in object detection. Meanwhile, it also analyses the impact of the problem on dense prediction strategy and believes that it leads to response mismatch of the two tasks. And then, the exists solutions of feature mismatch and response mismatch are introduced in detail respectively. At last, a conclusion is drew that response mismatch should be considered simultaneously when solving the feature mismatch. And some ideas are given to solve the problems all in one.

     

/

返回文章
返回