高庆生, 刘晓波, 梁珊. 基于动态增添法的DBN滚动轴承故障诊断[J]. 南昌航空大学学报(自然科学版), 2021, 35(2): 92-99. DOI: 10.3969/j.issn.2096-8566.2021.02.014
引用本文: 高庆生, 刘晓波, 梁珊. 基于动态增添法的DBN滚动轴承故障诊断[J]. 南昌航空大学学报(自然科学版), 2021, 35(2): 92-99. DOI: 10.3969/j.issn.2096-8566.2021.02.014
Qing-sheng GAO, Xiao-bo LIU, Shan LIANG. Fault Diagnosis of Rolling Bearing Based on DBN With Dynamic Addition Algorithm[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(2): 92-99. DOI: 10.3969/j.issn.2096-8566.2021.02.014
Citation: Qing-sheng GAO, Xiao-bo LIU, Shan LIANG. Fault Diagnosis of Rolling Bearing Based on DBN With Dynamic Addition Algorithm[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(2): 92-99. DOI: 10.3969/j.issn.2096-8566.2021.02.014

基于动态增添法的DBN滚动轴承故障诊断

Fault Diagnosis of Rolling Bearing Based on DBN With Dynamic Addition Algorithm

  • 摘要: 针对深度信念网络(DBN)层数的不确定性而导致故障诊断精度不高的问题,提出了一种基于动态增添算法的DBN诊断方法。首先通过动态增添算法确定隐含层层数,之后按照逐层递减原则,设置模型的隐含层神经元节点数目;并以滚动轴承为研究对象,通过分析其训练样本与测试样本的分类误差曲线,来表明基于动态增添算法的DBN方法对滚动轴承故障的诊断精度,并针对不同深度DBN模型的诊断性能进行对比,证明了本方法在滚动轴承故障诊断方面优势明显。

     

    Abstract: Aiming at the uncertainty of the depth belief network (DBN) layer, the fault diagnosis accuracy is not high. A DBN diagnosis method based on dynamic addition algorithm is proposed. Firstly, the paper firstly determines the number of hidden layers by dynamic adding algorithm, and then sets the number of hidden layer neurons in the model according to the principle of layer-by-layer decreasing; Taking the rolling bearing as the research object, the classification error curve of the training sample and the test sample is analyzed to show the diagnostic accuracy of the DBN method based on the dynamic addition algorithm on the rolling bearing fault, and the diagnostic performance of the DBN model with different depths is compared. The method has obvious advantages in fault diagnosis of rolling bearings.

     

/

返回文章
返回