邓沙丽, 邓绿, 杨海波. 轨道点的上同调环[J]. 南昌航空大学学报(自然科学版), 2021, 35(2): 47-50. DOI: 10.3969/j.issn.2096-8566.2021.02.008
引用本文: 邓沙丽, 邓绿, 杨海波. 轨道点的上同调环[J]. 南昌航空大学学报(自然科学版), 2021, 35(2): 47-50. DOI: 10.3969/j.issn.2096-8566.2021.02.008
Sha-li DENG, Lv DENG, Hai-Bo YANG. Cohomology Ring of Orbits[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(2): 47-50. DOI: 10.3969/j.issn.2096-8566.2021.02.008
Citation: Sha-li DENG, Lv DENG, Hai-Bo YANG. Cohomology Ring of Orbits[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(2): 47-50. DOI: 10.3969/j.issn.2096-8566.2021.02.008

轨道点的上同调环

Cohomology Ring of Orbits

  • 摘要: 研究了整数分次等变上同调和RO(G)分次等变上同调,结合同伦理论的等变奇异上同调,进一步得到在Gal(C/R)作用下轨道点的上同调环,轨道点是群作用等变空间一个基本模型,通过研究轨道点的等变上同调环,可推广到一般群作用空间的等变上同调理论。

     

    Abstract: In this paper, we investigate the integer graded and RO(G)-graded equivariant cohomologies. Combined with the homotopical equivariant singular cohomology we obtain the equivariant cohomology ring of an orbit with the Gal(C/R) action, which is a fundamental model of equivariant spaces with group action. We may in the future to generalize the result to the general equivariant cohomology of an arbitrary equivariant space.

     

/

返回文章
返回