孙文静, 李军华. 基于自适应支配和参考向量的高维多目标优化算法[J]. 南昌航空大学学报(自然科学版), 2021, 35(1): 52-62. DOI: 10.3969/j.issn.2096-8566.2021.01.009
引用本文: 孙文静, 李军华. 基于自适应支配和参考向量的高维多目标优化算法[J]. 南昌航空大学学报(自然科学版), 2021, 35(1): 52-62. DOI: 10.3969/j.issn.2096-8566.2021.01.009
Wen-jing SUN, Jun-hua LI. An Adaptive Dominance and Reference Vector Based Evolutionary Algorithm for Many-objective Optimization[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(1): 52-62. DOI: 10.3969/j.issn.2096-8566.2021.01.009
Citation: Wen-jing SUN, Jun-hua LI. An Adaptive Dominance and Reference Vector Based Evolutionary Algorithm for Many-objective Optimization[J]. Journal of nanchang hangkong university(Natural science edition), 2021, 35(1): 52-62. DOI: 10.3969/j.issn.2096-8566.2021.01.009

基于自适应支配和参考向量的高维多目标优化算法

An Adaptive Dominance and Reference Vector Based Evolutionary Algorithm for Many-objective Optimization

  • 摘要: 现有的改进支配方法提高了解集逼近Pareto前沿的能力,但平衡种群收敛性和多样性的能力仍然不足。针对此问题,提出了一种基于自适应支配和参考向量的高维多目标优化算法(An adaptive dominance and reference vector based evolutionary algorithm for many-objective optimization,ADRVEA)。首先提出自适应支配(Adaptive dominance,AD)来设计小生境机制;然后通过参考向量划分目标空间来提高种群多样性;最后构建适应度表达式来实现精英选择。实验证明所提出的ADRVEA不仅性能良好,而且有效平衡了种群的收敛性和多样性。

     

    Abstract: Improved dominance method improve the ability to approach the Pareto front, but they show poor ability in balancing convergence and diversity of population. To address this issue, this paper proposes an adaptive dominance and reference vector based evolutionary algorithm for many-objective optimization (ADRVEA). Firstly, the adaptive dominance (AD) is proposed to design an niche mechanism. Then the reference vector is adopted to divide the objective space for the purpose of the enhanced diversity. Finally, the fitness function is constructed to complete the elite selection. The experimental results demonstrated that the proposed ADRVEA not only has significant performance, but also effectively balances the convergence and diversity.

     

/

返回文章
返回