李品伟, 代冀阳, 应进. 基于改进Faster R-CNN的复杂环境车辆检测[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 73-79. DOI: 10.3969/j.issn.2096-8566.2020.03.011
引用本文: 李品伟, 代冀阳, 应进. 基于改进Faster R-CNN的复杂环境车辆检测[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 73-79. DOI: 10.3969/j.issn.2096-8566.2020.03.011
Pin-wei LI, Ji-yang DAI, Jin YING. Vehicle Detection Method Based on Improved Faster R-CNN[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 73-79. DOI: 10.3969/j.issn.2096-8566.2020.03.011
Citation: Pin-wei LI, Ji-yang DAI, Jin YING. Vehicle Detection Method Based on Improved Faster R-CNN[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 73-79. DOI: 10.3969/j.issn.2096-8566.2020.03.011

基于改进Faster R-CNN的复杂环境车辆检测

Vehicle Detection Method Based on Improved Faster R-CNN

  • 摘要: 针对复杂环境下的车辆检测,提出了一种改进的更快速区域卷积神经网络(Faster R-CNN)算法。对于传统Faster R-CNN算法应用于车辆检测时具有漏检、错检以及运行速度慢等问题,本研究通过添加更多复杂环境下的车辆数据集,改进原有模型的非极大值抑制(NMS)算法以及融合批量规范(batch normalization, BN)算法对其进行优化。试验证明,改进后的Faster R-CNN相较于Faster R-CNN在数据集上的综合平均识别率提升了4.86%,提升效果较为明显。

     

    Abstract: For vehicle detection in complex environments, an improved Faster R-CNN algorithm is proposed. For the traditional Faster R-CNN algorithm that has problems such as missed detection, false detection, and slow running speed when applied to vehicle detection, this study adds more vehicle data sets in complex environments, improves the non-maximum suppression algorithm of the original model, and integrate batch norm algorithm to optimize it. Experiments have proved that the improved Faster R-CNN has a 4.86% increase in the comprehensive average recognition rate on the data set compared to Faster R-CNN, and the improvement effect is more obvious.

     

/

返回文章
返回