明万元, 易舟. 基于斜坡函数求解Fredholm积分方程的配置方法[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 48-52. DOI: 10.3969/j.issn.2096-8566.2020.03.007
引用本文: 明万元, 易舟. 基于斜坡函数求解Fredholm积分方程的配置方法[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 48-52. DOI: 10.3969/j.issn.2096-8566.2020.03.007
Wan-yuan MING, Zhou YI. A Class of Colloction Method for Solving Fredholm Integral Equations Based on Ramp Function[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 48-52. DOI: 10.3969/j.issn.2096-8566.2020.03.007
Citation: Wan-yuan MING, Zhou YI. A Class of Colloction Method for Solving Fredholm Integral Equations Based on Ramp Function[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 48-52. DOI: 10.3969/j.issn.2096-8566.2020.03.007

基于斜坡函数求解Fredholm积分方程的配置方法

A Class of Colloction Method for Solving Fredholm Integral Equations Based on Ramp Function

  • 摘要: 基于斜坡函数构造了一类插值算子,通过对连续系统的离散得到了求解第二类线性Fredholm积分方程的配置格式。将Volterra积分方程的比较定理推广至Fredholm积分方程,并结合该类方程的豫解核表示定理严格证明了所构造数值格式的全局收敛性。最后,通过比较几个典型数值算例的数值解与精确解之间的误差,验证了本文格式的有效性。

     

    Abstract: A class of interpolation operator is constructed based on the ramp function, and the collocation scheme for solving the second kind linear Fredholm integral equations are obtained by discretizing the original continuous system. By generalizing the comparison theorem for Volterra integral equations to the case of Fredholm integral equations, and combining the resolvent representation theorem, the global convergence of the numerical scheme is proved strictly. Finally, the effectiveness of the scheme is verified by comparing the numerical and the analytic solution of several typical numerical experiments.

     

/

返回文章
返回